Supplementary Information 1:

This Supplementary Information includes two tables summarizing the equation system solved in our numerical simulations (Tables S1–S2).

Equation names	Equations	Ref.
Mass conservation	$\frac{\partial \varepsilon_f}{\partial t} + \nabla \bullet (\varepsilon_f \vec{v}_f) = 0$	1
Momentum conservation	$\rho_{f} \left(\frac{\partial}{\partial t} [\varepsilon_{f} \vec{v}_{f}] + \nabla \bullet [\varepsilon_{f} \vec{v}_{f} \otimes \vec{v}_{f}] \right) = \nabla \bullet (\dot{\sigma}_{f}) + \varepsilon_{f} \rho_{f} \vec{g} + \vec{I}_{f}$	1
Energy conservation	$(1-\phi)\rho_f C_{pf} \left(\frac{\partial T_f}{\partial t} + \vec{v}_f \bullet \nabla T_f \right) = -k_f \nabla \bullet \left((1-\phi) \bullet \nabla T_f \right) + Q_{fs}$	1
Stress tensor	$\dot{\sigma}_{f} = P_{f} \delta_{ij} + \frac{2}{3} \eta_{f} tr(\dot{\epsilon}_{f}) \delta_{ij} + 2 \eta_{f} \dot{\epsilon}_{f}$	1
Euler velocity integration	$\overrightarrow{v_{p}^{(k)}}(t+\Delta t) = \overrightarrow{v_{p}^{(k)}}(t) + \Delta t - \frac{\overrightarrow{F_{GPD}^{(k)}}(t) + \sum_{l=1}^{N_{l}^{(k)}} \left(\overrightarrow{F_{C}^{N(k,l)}}(t) + \overrightarrow{F_{C}^{T(k,l)}}(t)\right)}{m^{(k)}}$	^{Ед.} (4.4)
Euler displacement integration	$\vec{X}_{p}^{[k]}(t+\Delta t) = \vec{X}_{p}^{[k]}(t) + \Delta t \vec{v}_{p}^{[k]}(t+\Delta t)$	2
Euler rotation integration	$\vec{\omega_{p}}^{(k)}(t+\Delta t) = \vec{\omega_{p}}^{(k)}(t) + \Delta t \frac{\sum_{l=1}^{N_{l}^{(k)}} \left(\vec{T_{C}}^{(k,l)} + \vec{T_{L}}^{(k,l)}(t)\right)}{\vec{I}^{(k)}}$	2
Integration of solid temperature	$T_{s}^{(k)}(t+\Delta t) = T_{s}^{(k)}(t) + \Delta t_{solid} \frac{Q_{fs}^{(k)} + \sum_{l=1}^{N_{l}} \left(Q_{ss}^{(k,l)}(t) + Q_{sfs}^{(k,l)}(t) \right)}{m^{(k)} C_{ps}}$	2
Normal contact force	$\overrightarrow{F_{c}^{\mathcal{N}(i,j)}}(t) = \left(-k_{n}^{(i,j)}(t)\delta_{n}^{(i,j)}(t) + \eta_{n}^{(i,j)}(t)\Delta\overrightarrow{V_{p}^{\mathcal{N}(i,j)}}(t)\right)\overrightarrow{n_{ij}}$	2 5
Tangential contact force	$\vec{F}_{c}^{T[i,j]}(t) = -k_{t}^{[i,j]}(t) \delta_{t}^{[i,j]}(t) + \eta_{t}^{[i,j]}(t) \overline{\Delta V_{p}^{T[i,j]}}(t)$	2 5
Collisional torque	$\overline{T_{c}^{(i,j)}}(t) = \frac{d_{p}^{(i)} - \delta_{n}^{(i,j)}(t)}{2} \overline{F_{c}^{T(i,j)}}(t); \overline{T_{c}^{(j,i)}}(t) = \frac{d_{p}^{(j)} - \delta_{n}^{(i,j)}(t)}{2} \overline{F_{c}^{T(i,j)}}(t)$	2
normal spring (Hertzian model)	$k_{n}^{(i,j)}(t) = \frac{4}{3} \frac{E^{(i)} E^{(j)} \sqrt{R_{eff}^{(i,j)}}}{E^{(j)} (1 - \sigma^{(j)2}) + E^{(i)} (1 - \sigma^{(j)2})} \delta_{n}^{(i,j)\frac{1}{2}}(t)$	2
tangential spring (Hertzian model)	$k_{t}^{(i,j)}(t) = \frac{16}{3} \frac{G^{i}G^{j}\sqrt{R_{eff}^{(i,j)}}}{G^{j}(2-\sigma^{(i)}) + G^{i}(2-\sigma^{(j)})} \delta_{t}^{i,j\frac{1}{2}}(t)$	2
Elastic modulus	$G = \frac{E}{2(1+\sigma)}$	2
Normal damping coefficient	$\eta_{n}^{(i,j)}(t) = \frac{2\sqrt{m_{eff}^{(i,j)}(t)} \ln e_{n} }{\sqrt{\pi^{2} + \ln^{2} e_{n}}} \delta_{n}^{(i,j)}(t)^{\frac{1}{4}}$	2 5
Tangential damping coefficient	$\eta_{t}^{(i,j]} = \frac{2\sqrt{m_{eff}^{(i,j)}k_{t}^{(i,j)}(t)} \ln e_{t} }{\sqrt{\pi^{2} + \ln^{2}e_{t}}} \delta_{t}^{(i,j)}(t)^{\frac{1}{4}}$	2 5

Equation names	Equations	Ref.
effective radius	$R_{eff}^{[i,j]} = rac{2(d p^{[i]} + d_p^{[j]})}{d_p^{[i]} d_p^{[j]}}$	2
Effective mass	$m_{eff}^{(i,j)} = \frac{m^{(i)} + m^{(j)}}{m^{(i)} m^{(j)}}$	2
Solids/Fluid momentum exchange on REV	$\vec{I}_{f}(t) = \frac{1}{\nu_{REV}} \sum_{k=1}^{N_{k}} \vec{F}_{D}^{(k)}(t) K_{REV}(X_{p}^{(k)})$	2
Drag forces (for the fluid)	$\vec{F}_{D}^{(k)}(t) = -\nabla P_{f}(t) \left(\frac{\pi}{6} d_{p}^{(k)}\right) + \frac{\beta_{fs}^{(k)}(t)}{(1 - \varepsilon_{f}(t))} \left(\frac{\pi}{6} d_{p}^{(k)}\right) \left(\vec{v}_{f}(t) - \vec{v}_{p}^{(k)}(t)\right)$	2
Local fluid/solid momentum transfer	$\beta_{fs}^{(k)}(t) = \begin{cases} \frac{3}{4} C_D^{(k)}(t) \frac{\rho_f \varepsilon_f(t) (1 - \varepsilon_f) \ \vec{v}_f - \vec{v}_s^{(k)} \ }{d_p^{(k)}} \varepsilon_f^{-2.65} \varepsilon_f \ge 0.8 \\ \frac{150 (1 - \varepsilon_f(t))^2 \eta_f}{\varepsilon_f(t) d_p^{(k)2}} + \frac{1.75 \rho_f (1 - \varepsilon_f(t)) \ \vec{v}_f(t) - \vec{v}_s^{(k)}(t) \ }{d_p^{(k)}} \varepsilon_f < 0. \end{cases}$	3 4
Drag coefficient	$C_{D}^{(k)}(t) = \begin{cases} \frac{24}{Re^{(k)}(t)(1+0.15Re^{(k)}(t)^{0.687})} Re^{(k)}(t) < 1000\\ 0.44Re^{(k)}(t) \ge 1000 \end{cases}$	34
Particle Gravity-Drag- Pressure force	$\overline{F_{GPD}}(t) = \frac{m_p}{\Delta t} \left(\vec{v}_f + \tau_v \left(\vec{g} - \frac{\nabla P}{\rho_p} \right) - \vec{v}_p(t) \right) \left(1 - e^{\frac{-\Delta t}{\tau_v}} \right)$	Eq. (4.5)
Reynolds number	$Re^{\left[k ight]}\left(t ight) = rac{d_{m}^{\left[k ight]}\left\ ec{v}_{f}\left(t ight) - ec{v}_{s}^{\left[k ight]}\left(t ight) ight\ ho_{f}}{\eta_{f}}$	3
Liquid-solid heat transfer	$Q_{fs}^{(k)} \!=\! \pi N u^{(k)} k_{f} \! \left(\left. T_{s}^{(k)} \!-\! T f \right) ight)$	2
Nusselt correlation	$Nu^{(k)} = 2 + 0.6 R e^{(k)^{\frac{1}{2}}} P r^{\frac{1}{3}}$	2
Prandle number	$Pr = \frac{\eta C_{Pf}}{k_f}$	2
Solid-Solid correlation	$Q_{SS}(i,j) \!\!=\! 2k_{s}R^{*}\!\!\left(i,j ight)\!\left(T_{S}^{(i)}\!-T_{S}^{(j)} ight)$	2
Solid-fluid-solid conduction	$Q_{sts}(i,j) = H(i,j) \left(T_s^{(j)} - T_s^{(j)} \right)$	2
Effective thermal conductance	$H(i,j) = \frac{H(i)H(j)}{H(i) + H(j)}$	2
Heat conductance when separated	$H^{(k)} = -k_{f} \int_{0}^{\alpha_{sfs}} \left(\frac{\pi dp^{(k)} \sin \theta}{D_{\tilde{n}}^{(k,j)} - d_{p}^{k} \cos \theta} \right) \overline{d} \left(\frac{dp^{k}}{2} \sin \theta \right)$	2
Heat conductance when in contact	$H^{(k)} = -k_{f} \int_{\beta_{ds}}^{\alpha_{ds}} \left(\frac{\pi dp^{(k)} \sin \theta}{D_{n}^{(k,j)} - d_{p}^{k} \cos \theta} \right) d \left(\frac{dp^{k}}{2} \sin \theta \right)$	2

¹ Syamlal et al., (1993)
 ² Garg et al., (2010)
 ³ Benyahia et al., (2012)

⁴ Gidaspow, (1986)

Table S2 :	: Symbols	used in T	able S1
------------	-----------	-----------	---------

Symbol	Definition
$C_D^{(k)}$	Drag coefficient of the k th particle
$C_{Pf}^{^{D}}$	Fluid heat capacity
$C_{Ps}^{(k)}$	Heat capacity of the k th particle
$d_p^{(i)} \ d^{(i)}$	i th particle diameter
a_p	Particle normal restitution coefficient
e e e	Particle tangential restitution coefficient
$oldsymbol{\mathcal{L}}_t^{(i)}$	i th particle Young modulus
$\stackrel{L}{\rightarrow}$	Normal contact force between k th particle and its l th neighbor
$F_C^{\mathcal{H}(\mathbf{A},\mathbf{I})}$	
$F_C^{T[k,l]}$	Tangential contact forces between k ^{III} particle and its l ^{III} neighbor
$\overrightarrow{F}_{D}^{(k)}$	Drag force on k th particle
\vec{g}	Gravitational vector (m s^2)
$G^{(k)}$	k th particle shear moduli
$h^{\scriptscriptstyle (i,j)}$	Distance between i th and j th particles edges
Н	Heat conductance at the interface between two particles
\vec{L}	Fluid-solid momentum exchange
$I^{(k)}$	k th particle moment of inertia
K_{REM}	Generic kernel to determine the influence of a particle located at $\overline{X}_{p}^{[k]}$ on the REV
$k_{\scriptscriptstyle f}$	Fluid heat conductivity
$k_n^{(i,j)}$	Normal spring coefficient between $i^{\mbox{\tiny th}}$ and $j^{\mbox{\tiny th}}$ particles contact
$k_{t}^{\left(i,j ight) }$	Tangential spring coefficient between $i^{\mbox{th}}$ and $j^{\mbox{th}}$ particles contact
ľ	Neighbors index
$m^{(k)}$	k th particle mass
$m_{\scriptscriptstyle eff}^{\scriptscriptstyle (i,j)}$	i th and j th particles effective radius
$N_I^{(k)}$	Number of neighbors of the k th particle
N_k	Number of particles
N_u	Nusselt number
\vec{n}_{ij}	Normal vector between i th and j th particles
P_{f}	Fluid pressure (Pa)
Pr	Prandle number
Q_{fs}^{κ}	Fluid-solid conduction of the K ^m particle
$Q_{ss}^{(i,j)}$	Solid-solid conduction between the i th and k^{th} particles
$Q_{s\!f\!s}^{(i,j)}$	Solid-fluid-solid conduction between the i^{th} and k^{th} particles
$rac{ extbf{Rev}}{Re^{(k)}}$	Representative elementary volume i th particle Reynolds number
$R^{(i,j)}_{acc}$	i th and j th particles effective radius
$R^{(i,j)}_{\square}$	Contact area radius between i th and j th particles
$\bar{R^*}$	Effective radius of the contact area
$\overline{T}_{C}^{(k,l)}$	Contact torque between k^{th} particle and its l^{th} neighbor
T_{f}	Fluid temperature
$\overline{T}_{L}^{(k,l)}$	Lubrication torque between k th particle and its I th neighbor
\overline{T}_{s}^{k}	Temperature of the k^{th} particle

\vec{V}_{f}	Fluid velocity vector (m s ⁻¹)
$\overrightarrow{V}_{n}^{(k)}$	k th particle velocity vector (m s ⁻¹)
$\overline{X}_{n}^{P}{}^{(k)}$	k th particle position (m)
$\beta_{fs}^{(k)}$	k th particle – fluid momentum transfer coefficient
$\Delta V_{p}^{N(i,j)}$	Normal relative velocity between i^{th} and j^{th} particles
$\Delta V_{p}^{P_{[i,j]}}$	Tangential relative velocity between $i^{\mbox{\tiny th}}$ and $j^{\mbox{\tiny th}}$ particles
$lpha_{\scriptscriptstyle s\!f\!s}^{\scriptscriptstyle F} \ eta_{\scriptscriptstyle s\!f\!s} \ \delta_{\scriptscriptstyle i\! m i}$	Angle between the vector relying the mass centers of the particles and the position of the edge of the thermal boundary layer Angle between the vector relying the mass centers of the particles and the position of the edge of the contact area Kronecker tensor
$\delta^{(i,j)}$	Normal overlap between i th and j th particles
$\delta^{(i,j)}_t$	Tangential displacement during the contact between $i^{\mbox{\tiny th}}$ and $j^{\mbox{\tiny th}}$ particles contact
ε	Roughness distance below which lubrication is ineffective (m)
ε_{t}	Fluid volume fraction
ϵ_{f}	Fluid strain rate tensor
$\eta_{\scriptscriptstyle f}$	Fluid viscosity (Pa s)
$\eta_n^{(i,j)}$	Normal damping coefficient between $i^{\mbox{\tiny th}}$ and $j^{\mbox{\tiny th}}$ particles
$\eta_t^{(i,j)}$	Tangential damping coefficient between $i^{\mbox{\tiny th}}$ and $j^{\mbox{\tiny th}}$ particles
$\hat{\theta}$	Incremental angle
ν	Domain volume (m $^{-3}$)
$ ho_{f}$	Fluid density (kg m ⁻³)
$\sigma^{\scriptscriptstyle (i)}$	i th particle Poisson coefficient
$\dot{\sigma}_{t}$	Fluid stress tensor
$\vec{\omega}_{p}^{(k)}$	k^{th} particle rotation vector (rad s ⁻¹)
∇	Nabla operator
\otimes	Outer product