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ABSTRACT
Taupō, New Zealand, is an active caldera volcano that in recent times has erupted on average every ∼500 years, with the latest
explosive eruption in 232±10 CE.Monitoring at Taupō is challenging as there has been no eruptive activity in documented history;
however Taupō does undergo periods of unrest on roughly a decadal timescale, such as in 2019. Key to identifying these unrest
periods is the establishment of what represents ‘normal’ inter-unrest activity. In this study, we generate and present a detailed
earthquake catalogue for Taupō for 2010–2019 inclusive, consisting of 46,481 earthquakes. This record shows that the Taupō
region has background earthquake rates of 50–200 earthquakes per month and that the 2019 unrest episode was preceded
by an exponential increase in earthquake rate. We also show that when attenuation is accounted for there is no evidence
for low-frequency earthquakes at Taupō, and that this is an important consideration for volcano monitoring as low-frequency
earthquakes are often used to determine magma movement.
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1 INTRODUCTION
Monitoring of caldera volcanoes for potential signs of erup-
tive activity is challenging because of the infrequent yet po-
tentially catastrophic nature of their eruptions [Wilson et al.
2021]. While all eruptions from caldera volcanoes are pre-
ceded by a period of unrest, only a small proportion of unrest
periods lead to an eruption [Acocella et al. 2015]. Volcanic un-
rest is a broadly defined term but can generally be considered
as a period of activity that is distinct from the background
norm. Thus, in order to identify and define a period of unrest,
one must also define what constitutes ‘normal’ activity. Here
we consider the seismic record from Taupō volcano over a
ten year period (2010–2019) of ‘normal’ activity against which
to compare the unrest episode that occurred in 2019 [Illsley-
Kemp et al. 2021].
Taupō is a large rhyolitic caldera volcano that lies within
the Taupō Volcanic Zone (TVZ: Figure 1) in New Zealand’s
North Island (Te Ika-a-Māui) [Barker et al. 2021]. The TVZ
can be subdivided into three segments along its length. The
southern and northern segments are characterised by andesite
volcanism (e.g. Ruapehu and Whakaari/White Island), while
the central segment is dominated by rhyolite volcanism and
contains numerous caldera volcanoes that collectively make
up the most productive region of Quaternary silicic volcanism
on Earth [Wilson et al. 1995; 2009]. Volcanism in the TVZ is
ultimately driven by the subduction of the Hikurangi plateau
(Pacific plate) beneath the North Island (Australian plate) and
the hyperactive volcanism at Taupō is fuelled by subcrustal
basaltic magmas originating from high degrees of partial melt-
ing in the mantle wedge [Barker et al. 2020; Eberhart-Phillips
et al. 2020]. The TVZ is also coincident with the Taupō con-
tinental rift, which has present day extension rates increasing
from ≤5mmyr−1 at Ruapehu in the south to 13–19mmyr−1
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at the Bay of Plenty in the north [Wallace et al. 2004; Lamarche
et al. 2006; Villamor et al. 2017]. This manifests to the north
of Taupō as the Taupō Fault Belt, which features several NE-
trending normal faults with >100 m of surface displacement
[Langridge et al. 2016].
Taupō volcano is largely concealed beneath Lake Taupō,
which infills the caldera collapse structure and obscures most
of the young vent sites [Barker et al. 2021, Figure 1]. The struc-
tural caldera is clearly defined by the largest negative gravity
anomaly in the central North Island [Davy and Caldwell 1998;
Stagpoole et al. 2021] and was primarily formed by the struc-
tural collapse associated with the 25.5 ka Oruanui supererup-
tion [Wilson 2001]. The southern section of the lake does not
coincide with a negative gravity anomaly but is also thought to
have partially collapsed during the Oruanui eruption [Wilson
2001]. The southern margin of Taupō volcano coincides with
the geological boundary that separates the rhyolitic central and
andesitic southern TVZ just northeast of Kākaramea and Pi-
hanga volcanoes (Figure 1). To the north, Taupo merges into
the older domes of the Maroa volcanic centre. The 28 post-
Oruanui eruptions (25 during the last 12 ka) range greatly in
size and eruption style, with the latest and largest explosive
event occurring at 232 ± 10 CE [Wilson 1993; Hogg et al.
2012; Barker et al. 2015; 2019; Hogg et al. 2019]. This 232 CE
‘Taupō eruption’ occurred in the northeast corner of the Oru-
anui caldera and caused further collapse [Davy and Caldwell
1998].
Seismic activity at Taupō is frequent. New Zealand’s seis-
mic monitoring network (GeoNet, Petersen et al. [2011]) de-
tects more than 300 earthquakes at Taupō every year. This
‘background’ activity has been punctuated by variably docu-
mented increases in earthquake activity on roughly a 10 year
cycle [Eiby 1968; Gibowicz 1973; Hull and Grindley 1984;
Grindley 1986; Sherburn 1992; Otway and Sherburn 1994;
Johnston et al. 2002; Potter et al. 2015a; Barker et al. 2021],
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Figure 1: Left: The Taupō Volcanic Zone (TVZ) in New Zealand’s North Island. The boundaries of the young TVZ (envelope around
vents active in the last 350 kyr) is marked by the grey line, and is divided into the southern, central, and northern sections along
its length. The central TVZ is dominated by caldera-related rhyolitic volcanism, whereas the southern and northern TVZ are
characterised by andesite volcanism [Wilson et al. 1995; 2009]. Dark blue outlines denote the currently active calderas, Taupō
in the south, and Okataina in the north, brown outlines denote older calderas. The mapped active faults are shown in black
[Langridge et al. 2016]∗. Red inverted triangles show the locations of the seismometers used in this study. Right: Major features
of Taupō volcano. The red region denotes the Oruanui (25.5 ka) eruption collapse caldera and collar [Wilson 2001], the green
region denotes the Taupō (232 CE) eruption collapse caldera [Davy and Caldwell 1998; Hogg et al. 2012]. The orange triangles
denote vent locations from the last 2.15 ka of activity [Barker et al. 2015]. Figure adapted from Illsley-Kemp et al. [2021].

such as in 2019 [Illsley-Kemp et al. 2021]. The regular oc-
currence of seismicity makes monitoring of this volcano chal-
lenging as even periods of volcanic quiescence contain earth-
quake activity. Additional complexities arise because of the
location of Taupō in an actively extending rift [∼8mmyr−1:
Villamor et al. 2017]. Making the distinction between ‘nor-
mal’ rift-related seismicity and any seismicity that can be at-
tributed to volcanic processes is important in deciding what
constitutes volcanic unrest. In this paper we produce a highly-
detailed, 10 year earthquake catalogue for Taupō volcano and
its surrounding region. We also search within this earthquake
catalogue for low-frequency earthquakes, which have been at-
tributed to volcanic unrest at many volcanoes worldwide [e.g.
Hotovec-Ellis et al. 2018]. This catalogue is used to detail the
behaviour of this volcano in its rifting setting in an inter-unrest
time period.

∗http://data.gns.cri.nz/af/

2 DATA AND METHOD

2.1 Earthquake Detection and Location

We downloaded earthquake arrival time (pick) information
from GeoNet [Petersen et al. 2011] for 2527 earthquakes
that were detected, both by GeoNet and by manual inspec-
tion, in the Taupō region between 2010–2019 (inclusive).
Each earthquake was manually inspected and picks were ad-
justed/added accordingly for the 29 regional GeoNet seis-
mometers (9 broad-band, 20 short-period). These earthquakes
were then located using NonLinLoc [Lomax et al. 2000] and a
1D velocity model based on a seismic-refraction study from
the area [Stern and Benson 2011]. These earthquakes were
then used to generate templates to find additional earthquake
detections from continuous data using the matched-filter pack-
age EQcorrscan [Chamberlain et al. 2018].
For our matched-filter analysis we followed the same ap-
proach described in Illsley-Kemp et al. [2021]. Template wave-
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Figure 2: Main figure: The locations of all relocated earth-
quakes between 2010–2018 (inclusive). Inset: Relocated
earthquakes during 2019 [Illsley-Kemp et al. 2021].

forms were filtered between 2–15 Hz and cut to 4 seconds
length, starting 0.4 seconds before the P and S picks on the ver-
tical and horizontal channels, respectively. Template wave-
forms were then correlated with continuous data between
2010-01-01 and 2019-12-31, which was also filtered between
2–15 Hz. Day-long normalised correlations were time-shifted
to align with template moveouts and summed to generate day-
long cross-correlation sums. Detections were made when the
summed day-long correlations exceeded 0.4× the number of
channels. For each detection we then computed phase-picks
derived from cross-correlations, following the approach out-
lined by Warren-Smith et al. [2017]. We only retained picks
with normalised correlations of at-least 0.4, and events with
picks on a minimum of four stations. This analysis resulted in
a total of 46,481 earthquake detections between 2010–2019 (in-
clusive). We then located these earthquakes with NonLinLoc
[Lomax et al. 2000] and the same 1D velocity model used to
locate the template events. Each located earthquake was then
assigned a unique ID number, based on the GeoNet format.
If an earthquake in the catalog was also in the GeoNet cata-
logue, we used the GeoNet assigned ID (e.g. 2019p665658),
if the event was detected and picked by the EQcorrscan pro-
cedure the ID has a ‘d’ flag (e.g. 2019d005968); finally, if the
event was not recorded by GeoNet but was manually picked
and used as a template it has an ‘m’ flag (e.g. 2019m000056).
Direct comparisons between earthquakes that were located
by our procedure and by GeoNet are difficult. As well as
the velocity model and algorithm, the templates we used also
have many more phase picks that were not included in routine

GeoNet locations; this particularly applied to S picks. Further,
the vast majority of GeoNet locations at Taupō have ‘operator-
assigned’ depths, and so depth comparisons are not possible.

We then generated differential pick times using waveform
correlation on a 2 second window around each pick, 0.5 sec-
onds before the pick, allowing the pick to adjust by up to 0.3
seconds. We computed differential pick-times for all event
pairs within a maximum hypocentral separation of 8 km.
These were then used to relocate the entire catalog using the
double-difference relocation programme GrowClust [Trug-
man and Shearer 2017], requiring a minimum correlation of
0.6 and maximum cluster shifts of 2 km. Using this thresh-
old we were able to relocate a total of 20,548 earthquakes,
which we use for all subsequent analysis (Figure 2), with the
exception of earthquake rates. The mean NonLinLoc-derived
absolute 68 % confidence ellipsoid, representing absolute lo-
cation errors for the subsequently relocated earthquakes, is
±3.28 km and ±3.76 km for the horizontal and vertical direc-
tion, respectively. The relative location errors derived from
the internal GrowClust bootstrapping analysis for the relo-
cated earthquakes are ±0.85 km and ±0.51 km for the hor-
izontal and vertical directions, respectively.

2.2 Earthquake Magnitudes

Figure 3: A comparison between local magnitude (ML) and
moment magnitude (MW) values for the earthquake catalogue
and respective b-values. The main panel shows that local
magnitudes are lower than the equivalent moment magnitudes
for ML < 2. Red data points are earthquakes with a known
radiation pattern. Each side panel shows the magnitude-
frequency distribution and b-values for both local and moment
magnitudes, b-values are calculated using the boundary-value-
stability method [Roberts et al. 2015]. The b-values for local
and moment magnitudes are 0.87 and 2.04 respectively, high-
lighting the discrepancy.
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In order to calculate accurate local magnitudes (𝑀𝐿 ) for
the catalog we first convolved the seismograms (bandpass fil-
tered between 1–20 Hz) for each earthquake with the Wood-
Anderson standard response [Anderson and Wood 1925;
Richter 1935] and measured the peak-to-peak displacement
amplitude on the vertical component. We then use the local
magnitude scale for Taupō from [Illsley-Kemp et al. 2021] to
calculate local magnitudes while accounting for the local at-
tenuation structure [Keir et al. 2006; Illsley-Kemp et al. 2017].
Recent work by Hudson et al. [2022] has shown that a local
magnitude scale tends to underestimate magnitudes, particu-
larly in volcanic regions with highly attenuating crust. Regions
of high attenuation will cause the loss of high-frequency earth-
quake energy, which acts to reduce the maximum amplitude
of a seismic phase in the time-domain. Deichmann [2017] has
shown that this is likely to affect local magnitude measure-
ments, but that this will not affect the measure of moment
magnitude (𝑀𝑊 ), as this is calculated using the long-period
seismic energy. Therefore, in addition to local magnitudes
we also calculate moment magnitudes using SeisSrcMoment
[Hudson et al. 2022] (Table A1). This uses the spectral method
of Stork et al. [2014] to measure the seismic moment (𝑀𝑜) by
fitting a Brune source model [Brune 1970] to the displacement
spectrum of the seismic signal (Figure A1). The method uses
the radiation pattern for P and S waves, which must be in-
verted for separately. Where available we use the radiation
patterns inverted for in Illsley-Kemp et al. [2021] using MTFit
[Pugh and White 2018]. For the vast majority of the earth-
quakes we assume an average radiation pattern [Hudson et al.
2022]. We then convert seismic moment into moment mag-
nitude using the relationship of Hanks and Kanamori [1979].
Finally we calculate b-values both for the dataset as a whole
(Figure 3) and for spatially discretised areas (Figure 4). For
these calculations we use the boundary-value-stability method
of Roberts et al. [2015] combined with the maximum likeli-
hood method. For the spatially discretised dataset we limit
our calculations to areas with at least 100 earthquakes, with
many having far more than this, and calculate an individual
magnitude of completeness for each area (Figure 4).

3 RESULTS

When we compare the results of moment magnitude (𝑀𝑊 )
versus local magnitude (𝑀𝐿 ) for the entire earthquake cata-
logue (Figure 3) we see a similar pattern to that reported by
Hudson et al. [2022], namely that the local magnitude scale ap-
pears to underestimate earthquake magnitude for values less

Figure 4: [Right] [A] The cumulative spatial distribution of earth-
quakes. The region is divided into 0.02° × 0.02° subregions and
the number of earthquakes summed. [B] As above but earth-
quake magnitudes are converted into seismic moment release
and summed. [C] Spatially discretised b-value calculations in
0.04° × 0.04° subregions. Only regions with at least 100 earth-
quakes are used for the calculation and individual magnitudes
of completeness are calculated.
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than an 𝑀𝐿 of 3. This relationship can be described by:

𝑀𝑊 = 2.15 + 0.27𝑀𝐿 − 0.05𝑀2𝐿 + 0.02𝑀3𝐿 , (1)

this relationship has a residual standard error of ±0.31. We see
that earthquakes with a known radiation pattern (red dots in
Figure 3) fit this relationship closely, whereas there is more
scatter for earthquakes with an assumed radiation pattern.
There are also 13 earthquakes in our catalogue which had mo-
ment magnitudes independently calculated by GeoNet, they
are in good agreement within 0.5 magnitude units. The fi-
nal earthquake catalogue has local magnitudes ranging from
𝑀𝐿 −1.6 to 5.3, with a magnitude of completeness (𝑀𝐶 ) of
1.2 and a b-value of 0.86 (Figure 3). In contrast the moment
magnitudes range from 𝑀𝑊 0.6 to 4.7, with a magnitude of
completeness of 2.6 and a b-value of 2.01 (Figure 3). Generally
b-values are elevated (> 1) in all regions, but are particularly
high in the Kākaramea, Waih̄ı Fault, and Wairakei regions
(Figures 1 and 4C).
The spatial distribution of the earthquakes is rather clus-
tered (Figures 2 and 4). In particular there is a very active
cluster of seismicity beneath Kākaramea volcano which shows
clearly in both the distribution of earthquakes (Figure 4A)
and cumulative seismic moment release (Figure 4B). Closer
to Taupō caldera, earthquake activity is focused in three re-
gions; in the south of the lake near Motuoapa, between Mo-
tutaiko Island and Karangahape Cliffs, and in the northeast of
the caldera. The earthquakes in the 2019 volcanic unrest event
reflected this distribution but with a far higher earthquake-rate
[Illsley-Kemp et al. 2021]. To the northeast of the caldera, the
earthquake activity clearly distinguishes the geothermal fields
of Wairakei and Rotokawa [Sherburn et al. 2015; Hopp et al.
2019], though the former is less obvious in a map of cumula-
tive seismic moment release (Figure 4). The region displays a
relatively constant rate of earthquake activity, however there
is a slight increase, in 2014, from fewer than 100 earthquakes
a month to 100–200 earthquakes a month (Figure 5). This
is punctuated by intense swarms beneath Kākaramea in 2015
and 2017. There is then a noticeable exponential increase in
seismicity from mid-2018 up until the 2019 unrest event, be-
fore a rapid decrease [Illsley-Kemp et al. 2021].
The Kākaramea swarms will be described in detail seperate
to this manuscript. Here we describe the characteristics of the
rest of the earthquake catalogue. The south of the lake, near
the settlements of Tūrangi and Motuoapa, was one of the more
seismically active parts of the region (Figure 6). Here, earth-
quakes tend to occur in rift-aligned (NNE–SSW) clusters be-
tween 7–10 km depth (b.s.l.). A large proportion of this seismic
activity occurs beneath the Motuoapa peninsula, a complex of
lava domes which last erupted ~35 ka [Kósik et al. 2021]. Fur-
ther to the west, there is a cluster of seismicity near the Waih̄ı
fault scarp, between 8–9 km depth (Figure 7). The vast major-
ity of these earthquakes (>90 %) occurred in three spatially dis-
crete clusters in 2016 and 2017 with no mainshock-aftershock
pattern. With the exception of these three clusters, the Waih̄ı
fault region was seismically quiet over the 10 year study pe-
riod. In the Taupō caldera region (Figure 8), the seismicity
generally matches the distribution shown in the 2019 volcanic
unrest [Illsley-Kemp et al. 2021], but in far smaller numbers.

Seismicity predominantly occurs between 6–12 km depth and
there is very little earthquake activity in the region of the Horo-
matangi Reefs. To the northeast, there is highly clustered seis-
mic activity near the four geothermal power plants and this
occurs between 2–10 km depth (Figure 9). There is then an
isolated earthquake cluster further to the north which appears
to dip to the southwest at ∼40◦.

Figure 5: Rolling earthquake rates (i.e. cumulative number of
earthquakes) for both 7- and 28-day time periods (backward-
looking). Top shows the distribution of earthquake magni-
tudes through time and a rolling magnitude of completeness
calculated over 28-day time-periods using the methodology of
[Wiemer and Wyss 2000]. These calculations are made using
the full earthquake catalogue of 46,481 earthquakes.

4 DISCUSSION
4.1 Earthquake activity at Taupō
Our 10-year study is the longest earthquake catalogue, aside
from the GeoNet catalogue, that has been produced at Taupō
and so provides insight into the earthquake activity on these
time-lengths. Our results show that the ‘background’ rate of
seismic activity at Taupō is relatively constant, however we
do observe an increase in 2014 (Figure 5). Prior to this the 7-
and 28-day earthquake rates were approximately 10 and 50,
respectively. Then, following a 𝑀𝑊3 earthquake near Mo-
tuoapa on 2014-02-21, the background 7- and 28-day earth-
quake rate for the region increases to approximately 50 and
200, respectively (Figure 5). By calculating the magnitude of
completeness over a rolling time-window we can show that
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Figure 6: Earthquakes in the Tūrangi-Motuoapa region, coloured by origin time. The red box in the inset donates the location of
the main panel. The cross-section is a 1:1 scale.

Figure 7: Earthquakes in the Waih̄ı fault region, coloured by origin time. The red box in the inset donates the location of the main
panel. The cross-section is a 1:1 scale.

this increase in earthquake rate was not due to an improve-
ment in the earthquake detection, as the magnitude of com-
pleteness stays relatively constant at 𝑀𝑊 ∼2.6 for the whole
ten-year time period. This background earthquake rate is
punctuated by short periods of intense seismic activity, at
some points in 2017 reaching rates of 10,000 earthquakes a
week, though this was limited to swarms under Kākaramea
and is unlikely to be directly related to Taupō volcano itself.
There is also a noted increase in earthquake rate, in both the
7-day and 28-day average, from mid-2018 to September 2019.

This increase is exponential, resulting in an increase in 28-
day earthquake rate from ∼100 to ∼1000 over a year. This in-
crease in earthquake rate closely matches the onset of ground
deformation at Taupō which culminated in the 2019 magmatic
unrest [Illsley-Kemp et al. 2021]. The background earthquake
rate shown here can be used as a useful indicator of what
constitutes ‘normal’ activity at Taupō. This metric has been
proposed as a key measure of unrest state for New Zealand
volcanoes, and for Taupō specifically [Potter et al. 2015a; b].
In addition, earthquake rate is an important part of Bayesian
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Figure 8: Earthquakes in the Taupō caldera region, coloured by origin time. The red box in the inset donates the location of the
main panel. The cross-section is a 1:1 scale.

Figure 9: Earthquakes in the Wairakei-Rotokawa region, coloured by origin time. Red contours denote the 10 ohm resistivity
contour taken from Bibby et al. [1995], which correlates low-resistivity zones to named geothermal fields. The red box in the
inset donates the location of the main panel. The cross-section is a 1:1 scale.

Event Trees, which are increasingly being proposed as a mon-
itoring and response tool at volcanoes worldwide [Constanti-
nescu et al. 2016; Tierz et al. 2020].

In addition to earthquake rate, when considering whether
earthquake activity is related to unrest at Taupō volcano one
must of course consider the spatial location of the seismicity.
Defining precise spatial boundaries for what defines Taupō
volcano is not simple, as described by Barker et al. [2021], and
has likely changed over time. We can suppose that earth-
quakes which occur in the region of the Taupō caldera, such
as the 2019 unrest, are more likely to be directly associated
with the modern magma reservoir [Illsley-Kemp et al. 2021].

In contrast the earthquake swarms in 2017, which caused rates
of nearly 10,000 earthquakes per week (Figure 5), were situ-
ated beneath Kākaramea outside of the area considered to be
‘Young Taupō’ [Barker et al. 2021], and thus may be unre-
lated to unrest within the Taupō magma reservoir. A similar
argument follows with earthquake activity in the geothermal
fields north of Taupō. Shallow seismicity here is likely to be
influenced by geothermal power plant operations, however it
is likely that these ‘satellite’ systems would be influenced by
major unrest at Taupō and so heightened seismic activity here,
particularly deep (>5 km) within the geothermal fields, should
not be considered as entirely divorced.
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Through calculating both local and moment magnitudes for
our earthquake catalogue we have demonstrated the differ-
ence this can make to b-value calculation (Figure 3). If using
local magnitudes, a b-value of 0.86 is calculated, whereas with
moment magnitudes a b-value of 2.01 is produced. This is
a large difference and would lead to differing interpretations
about the seismic activity as b-values less than 1 are often as-
sociated with tectonic cycles, whereas values greater than 1
are linked to fluid-driven seismicity [Wyss 1973; Wyss et al.
2001; Wiemer and Wyss 2002]. Our findings therefore reit-
erate the results of Hudson et al. [2022] that moment magni-
tudes should be used when considering b-values in volcanic
settings. b-values in our earthquake catalogue show relatively
little spatial variation (Figure 4) and suggest that seismicity
in the Taupō region is primarily driven by fluid-fault inter-
actions, as similarly documented at Ngatamariki geothermal
field [Hopp et al. 2019], and at other geothermal and volcanic
regions [e.g. Greenfield et al. 2020].
Our earthquake results at Ngatamariki are in good agree-
ment with the more detailed study of this system by Hopp
et al. [2019] (Figure 9). They found that seismicity occurred
in the northwest and southeast of the field, closely associated
with the location of injection wells. Ngatamariki earthquakes
presented in our study are 1–2 km deeper than those located
by Hopp et al. [2019]; this is likely due to the Ngatamariki-
specific velocity model used by Hopp et al. [2019]. Seismicity
at Rotokawa geothermal field is confined to an area of approx-
imately 2 km2. This occurs between reinjection and produc-
tion wells and has previously been attributed to cooling-driven
contraction of the geothermal reservoir [Sherburn et al. 2015].
Finally, a cluster of seismicity occurs near the boundary of
the Wairakei and Tauhara geothermal fields occurs (Figure 9).
This cluster of seismicity is close to a reinjection site that be-
gan operating in 2011 [Sherburn et al. 2015]. Deep earthquakes
(4–6 km) here have been interpreted as occurring on a fault
structure [Sepulveda et al. 2013], however we see no evidence
for this in our results. Seismicity rates at all these geothermal
fields remains relatively constant during our study period. We
note, however, that a particularly deep (8–9 km) cluster of seis-
micity to the south of the Wairakei field is composed of two
distinct swarms in 2013 and 2019 (Figure 9).
It has often been suggested that volcanic earthquakes can
be triggered by large, distal earthquakes [e.g. West et al. 2005;
Yukutake et al. 2013; Aizawa et al. 2016] and this behaviour has
been explicitly suggested for the TVZ in response to the 2016
Kaikōura earthquake [Peng et al. 2018; Yao et al. 2021]. We find
no evidence that the Kaikōura earthquake triggered microseis-
micity in the Taupō region. However, we cannot discount
that this event may have triggered very-low-frequency tremor
which would likely be missed by our template-matching ap-
proach.

4.2 Frequency Analysis

Earthquake activity in volcanic regions has frequently been
shown to include low-frequency (long-period) earthquakes
which predominantly contain frequencies <5 Hz [e.g. Julian
1994; Chouet 1996; Neuberg et al. 2000; Hotovec-Ellis et
al. 2018]. These low-frequency earthquakes have been in-

Figure 10: Hypocentral distance vs Frequency Index (FI) for
222,743 individual station-earthquake pairs recorded in this
study.

terpreted to represent deformation involving aqueous fluids
and/or magma. We therefore aimed to search the Taupō
earthquake catalogue for examples of these low-frequency
events. For each earthquake in our catalogue we calculate the
Frequency Index (FI) [Buurman and West 2006]. The FI is a
measure of the ratio between the high (7–11 Hz) and low (0.5–
2 Hz) frequency energy content in each earthquake, which is
then rescaled using a base 10 logarithm:

𝐹𝐼 = log10
𝐴𝐻

𝐴𝐿

, (2)

where 𝐴𝐻 and 𝐴𝐿 are the mean amplitudes in the high and
low frequency bands respectively. By calculating a FI value
for each earthquake-station pair (222,743 total measurements)
we can see that FI decreases with distance (Figure 10). This
trend is non-linear and in order to examine the FI of the earth-
quake at its origin we must remove the dependence of FI with
distance. To achieve this we follow the approach of Green-
field et al. [2019]. By incorporating the effect of attenuation
into Equation 2 we can see that:

𝐹𝐼 (𝑟) = 𝑟

2𝑄𝑣
(ω𝐿 − ω𝐻 ) log10 𝑒 + 𝐹𝐼𝑂, (3)

where 𝐹𝐼 (𝑟) is the frequency index as a function of
earthquake-station distance, 𝑟 is distance, 𝑄 is the seismic
quality factor, 𝑣 is the seismic velocity, ω𝐿 and ω𝐻 are the
mean angular frequencies in the lower and higher frequency
bands, and 𝐹𝐼𝑂 is the frequency index at the earthquake
source. If we then consider the change of FI through a simple
1-D attenuation model we produce the equation:

𝐹𝐼 (𝑄, 𝑟)𝑖,𝑘 = 𝐹𝐼𝑂,𝑖 + log10 𝑒
∑︁
𝑖

𝑟𝑖, 𝑗

𝑄 𝑗𝑣 𝑗
(ω𝐿 −ω𝐻 ) +𝐶𝑘 , (4)

where 𝐹𝐼 for event 𝑖 at station 𝑘 includes the effect of atten-
uation (𝑄) through layer 𝑗 , we also include the station cor-
rection term 𝐶𝑘 . Equation 4 is in the form of 𝐴𝑥 = 𝑏 and
can be solved, using a least-squares approach, to give a value
of 𝐹𝐼𝑂 for every earthquake, stations corrections, and a 1-D
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depth dependent Q model. We also include a regularisation
matrix of the form,



0 . . . 0
. . .

0
...

... −2 1
1 −2 1 0

1 −2 1
0 . . . 0 1 −2


(5)

In order to calculate raypath lengths in individual depth lay-
ers we use the RAYINVR package [Zelt and Smith 1992] with the
same 1D velocity model used for earthquake location. This
produces the results shown in Figure 11. The 1D Q model
shows that Q increases with depth through the crust and the
obtained values broadly agree with the shallow results from
the nationwide Q-inversion of Eberhart-Phillips et al. [2020].
We show that once attenuation is taken into account the FI
values in-fact show no clear evidence for low-frequency earth-
quakes. On closer inspection, even earthquakes with the low-
est corrected FI values (22 with FI less than −1) are in fact false
detections generated by surface waves from large earthquakes
∼2000 km to the north of New Zealand, in the Kermadecs.
While our analysis of earthquake frequency content could
be considered a ‘null result’, it in fact has important implica-
tions for the monitoring of Taupō and volcanoes more gen-
erally. A key result of this modelling is that the uncorrected
FI values (Figure 11A) could easily be interpreted as two pop-
ulations of VT and LP earthquakes [e.g. Hotovec-Ellis et al.
2018]. However, once attenuation is accounted for the low-
frequency population is removed and there is no evidence
for low-frequency earthquakes. This agrees closely with ex-
perimental studies by Clarke et al. [2021] who used volcano
parameters from Whakaari to show that intrinsic attenua-
tion can make volcano-tectonic earthquakes resemble long-
period seismicity. The implications for Taupō are that low-
frequency earthquakes are either uncommon, or do not occur.
Alternatively the GeoNet seismic network is too sparse to de-
tect low-frequency earthquakes or low-frequency earthquakes
were not sufficiently captured by our waveform templates and
filtering. Therefore, low-frequency earthquakes should not
necessarily be relied upon as a precursor to unrest/eruption at
Taupō; for example, there was no evidence for low-frequency
earthquakes before or during the demonstrably magmatic un-
rest event of 2019 [Illsley-Kemp et al. 2021]. On the other
hand, if genuine low-frequency earthquakes are observed at
Taupō in the future they can be considered anomalous and of
particular note for volcano monitoring. A densification of the
seismic network at Taupō and routine consideration of attenu-
ation may be necessary to identify future ‘true’ low-frequency
earthquakes.
For volcano monitoring worldwide, we reiterate the find-
ings of [Clarke et al. 2021] to suggest that great care must
be taken when interpreting the frequency content of volcanic
earthquakes. It is important to account for attenuation (both
intrinsic and scattering) before asserting that low-frequency

Figure 11: [A] Frequency index (FI) values for individual station-
event pairs, before attenuation is accounted for. [B] The results
of the inversion for attenuation-adjusted frequency index. [C]
The resulting model of Q versus depth in 2 km depth slices.

earthquakes have occurred. This is particularly important
for volcano monitoring networks which have relatively large
distances between earthquake hypocentres and seismometers,
like Taupō (Figure 10).

5 CONCLUSIONS
In this paper we present a detailed earthquake catalogue for
the Taupō region, New Zealand, from 2010–2019. Our results
show that:

• During the study period we detect and locate 46,481
earthquakes in the Taupō region. The majority of these occur
outside of Taupō caldera and are likely driven by fluid-fault
interactions.

• Background earthquake rates at Taupō are between 50–
200 earthquakes per month. The 2019 unrest episode is pre-
ceded by an exponential increase in earthquake rate that co-
incides with the onset of ground deformation.

• b-values are elevated across the study region, with an
overall b-value of 2.01, and we further confirm that it is im-
portant to use moment-magnitudes when calculating b-values
in volcanic regions.

• Earthquake signals that are initially identified as low-
frequency events are in fact volcano-tectonic earthquakes oc-
curring within a highly attenuating region. There is no evi-
dence for low-frequency earthquakes at Taupō, and attenua-
tion must be accounted for in order to robustly identify such
events.
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APPENDIX A
The appendix contains further details of the moment magni-
tude calculations, including a comparison to GeoNet-derived
magnitudes

Table A1: A comparison between moment magnitudes calcu-
lated by GeoNet and in this study.

GeoNet ID GeoNet Mw This study Mw

3247369 3.3 3.0
3254473 3.8 3.2

2015p495943 3.7 3.2
2016p634735 3.9 3.6
2017p235423 3.5 3.1
2017p237835 4.7 4.2
2017p445849 3.9 3.3
2019p472013 3.6 3.0
2019p524364 3.9 3.2
2019p665661 4.5 4.4
2019p665728 3.6 2.8
2019p809529 3.4 2.7
2019p840069 2.9 2.9
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Figure A1: Examples of earthquake source displacement spectra (solid lines) for three separate earthquakes at stations RATZ,
RITZ, and KATZ. Dashed lines show the best fitting Brune model.
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