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ABSTRACT
Large magnitude explosive volcanic eruptions occur globally at a rate of 1–2 per 1000 years and can cause devastating global
impacts. Despite the risk these eruptions pose, we have no reliable method to forecast whether lower magnitude eruptions
are precursory to a larger event. Here we use deposits from the ~7.6 ka eruption of Mount Mazama (Crater Lake, Oregon) to
analyze precursors to a large eruption. New compositional and textural data suggest that deposits formerly attributed to the
climactic eruption include at least three precursor eruptions. In this way, the climactic Mazama eruptive sequence resembles the
four-month build-up to the 1883 Krakatau eruption. Distinctive textural and compositional properties of precursor units further
suggest that at least one precursory eruption tapped a separate magma lens. Together our data support the growing evidence
that eruption of large magma volumes requires the pre- or syn-eruptive amalgamation of multiple melt lenses.

KEYWORDS: Precursory eruption; Textural analysis; EPMA; SEM; Crater Lake; Large magnitude eruption.

1 INTRODUCTION
A major challenge in volcanology is translating precursory ac-
tivity into accurate eruption forecasts [Decker 1986; Sparks
2003; Wright et al. 2019]. Correct interpretation of precur-
sory signals is particularly critical for very large (magnitude
>M7) caldera-forming eruptions that cause devastating global
impacts [Newhall et al. 2018; Cassidy and Mani 2022]. The
most recent such eruption—Tambora, Indonesia, 1815—was
responsible for at least 60,000 fatalities [Auker et al. 2013],
famously caused a ‘year without a summer’ in the northern
hemisphere, may have initiated the first worldwide cholera
pandemic and, over the longer term, may have laid the founda-
tion for Ireland’s great famine and the first economic depres-
sion in the US [D’Arcy Wood 2015]. The consequences of the
next M7 eruption will certainly be even more wide-ranging, as
illustrated by the supply chain disruption created by the much
smaller (M4) 2010 eruption of Eyjafjallajökull, Iceland [Birtch-
nell and Büscher 2010; Harris et al. 2012]. The long repose
period between >M7 eruptions [Rougier et al. 2018], however,
means that we have limited knowledge about the sequence of
events that may presage a caldera-forming event.
Recent work on past eruptions has provided evidence that
the build-up to a caldera-forming event may escalate over at
least months and involve multiple explosions. For example,
the M6.1 eruption of Pinatubo, Philippines, in 1991 was pre-
ceded by ~2 months of precursory activity that included earth-
quakes, phreatic eruptions, dome extrusion and, over the last
few days, various forms of explosive activity [Hoblitt 1996].
The onset of activity preceding the M6.7 eruption of Krakatau
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volcano, in 1883, was well documented by Dutch and British
researchers [Simkin and Fiske 1983]. A poorly known sub-
Plinian (?) – to – effusive eruption in 1680–81 may have been
an early precursor [Verbeek 1885]; better documented precur-
sory activity included several years of seismicity [Symons 1888]
and ~4 months of precursory Vulcanian/sub-Plinian eruptions
(probably in part phreatomagmatic). Near-continuous ash
emissions then preceded eruptions from multiple vents that
intensified during the days leading to the paroxysmal activity
producing ash fall over tens of kilometres [Madden-Nadeau
et al. 2021]. The build-up to the M7 eruption of Tambora vol-
cano, Indonesia, in 1815 is not as well documented, although
hints of precursory activity found in ship logs suggest volcanic
unrest as early as 1812, then clear ash-producing eruptions
in 1814 [Stothers 1984]. An ~M5 eruption on 5 April 1815
lasted for several hours before the main phase of the erup-
tion began at 7 pm on 10 April with three separate eruption
columns initially observed near the volcano’s summit [Stothers
1984]. Although there are no eyewitness accounts for the late-
seventeenth century BCE eruption of Santorini volcano (the
M7.3 Minoan eruption), geologic evidence indicates that there
were early alternating magmatic and phreatomagmatic sub-
Plinian eruptions [Cioni et al. 2000] prior to multiple Plinian
phases that alternated in eruptive style as the vent migrated
into the pre-existing flooded caldera [Druitt 2014]. A recent
study of the M8.3 Huckleberry Ridge eruption, Yellowstone,
provides evidence not only of multiple eruptions in the early
Plinian phase of activity but also tapping of multiple melt
lenses [Myers et al. 2016]. Finally, the 15 January 2022 M6.2
eruption of Hunga Tonga-Hunga Ha’a’pai volcano was pre-
ceded by eruptions in 2009 and 2014–2015, as well as two
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sub-Plinian eruptions in the month leading up to the main
eruption that sent a spectacular umbrella cloud to ~53 km a.s.l.
[Global Volcanism Program 2022; Gupta et al. 2022; Kelly et
al. 2024]. Taken together, these examples show that the onset
of caldera-forming eruptions can be protracted and complex;
these examples also raise important questions about both the
evolving geometry of the magma reservoir feeding successive
events and the physical processes required to fully destabilize
complex magmatic systems.
Here we re-examine deposits from the onset of climactic ac-
tivity during the ~7600 yr BP [Zdanowicz et al. 1999; Egan et al.
2015] eruption of Mount Mazama that produced Crater Lake,
Oregon, with the goal of assessing conditions that triggered the
paroxysmal phase. The Mazama eruption had a magnitude
≥M7.1, deposited ash over >1 million km2 of north-western
North America [Buckland et al. 2020] and caused extensive and
long-lasting impacts on the surrounding landscape and vege-
tation [e.g. Long et al. 2014; O’Connor et al. 2015; Baig and
Gavin 2023] and, in some locations, the Indigenous communi-
ties [Oetelaar and Beaudoin 2005; 2016]. The Mazama tephra
deposit offers a unique opportunity to study the run-up to an
>M7 eruption because of the predominantly terrestrial depo-
sition and the exceptional preservation of the Plinian fall se-
quence. The caldera-forming eruption had multiple precursor
eruptions during the c.200 years leading to the climactic event,
two of which produced Llao Rock and Cleetwood fall deposits
[Bacon 1983; Young 1990; Wiejaczka and Giachetti 2022]. Both
initiated with strong explosive activity and ended with effu-
sion of substantial rhyodacite lava flows. More surprisingly,
the rhyodacite flow that followed the Cleetwood explosive ac-
tivity was still hot when the Crater Lake caldera formed [Bacon
1983], suggesting a repose interval of only weeks to months.
What then triggered the main phase of the eruption? We ad-
dress this question by examining, in detail, the early climactic
activity, which has been separated into two main phases—the
lower pumice and upper pumice units—discriminated by their
different dispersal directions and separated by a prominent
ash bed [Young 1990]. We focus particularly on the ash frac-
tion of medial deposits, building on studies of recent, smaller
eruptions that have demonstrated how ash textures can pro-
vide information about subsequent eruption magnitude [Ham-
mer et al. 1999; Taddeucci et al. 2004; Suzuki et al. 2013; Gaunt
et al. 2016; Matsumoto and Geshi 2021; Wright et al. 2023].
Importantly, such analysis has not yet been used to interpret
the build-up to large prehistoric eruptions.

2 BACKGROUND

2.1 The ash component of tephra deposits

Typically, petrologists analyse the larger (lapilli-size) compo-
nents of tephra deposits while physical volcanologists pay
more attention to the ash-sized components. This division de-
rives, on the one hand, from the petrologic opportunity pro-
vided by large pumice clasts to constrain conditions of pre-
eruptive magma storage and ascent [e.g. Blundy and Cashman
2008; Saunders et al. 2012; Cooper and Kent 2014; Shamloo
and Till 2019] and, on the other, the volumetric dominance of
ash and its importance for understanding conditions of magma

fragmentation, ash transport and deposition [e.g. Rosi et al.
1999; Pistolesi et al. 2011; Cioni et al. 2014; Eychenne et al.
2015; Pistolesi et al. 2015; Buckland et al. 2021; 2022]. Impor-
tantly, however, textural analysis of the ash component can
also provide insight into conduit processes related to decom-
pression and temporary arrest, particularly when constrained
by experiments [e.g. Hammer et al. 1999; Cashman and Mc-
Connell 2005; Miwa et al. 2013; Cioni et al. 2014; Cassidy et
al. 2015; Gaunt et al. 2016; Liu et al. 2020; Vásconez Müller et
al. 2022]. Data compilation of samples from sequential erup-
tions with known preceding repose times shows that, in gen-
eral, plagioclase microlite crystallinity increases with increas-
ing pre-eruptive repose duration and that the maximum crys-
tal number per area (NA) correlates crudely with explosivity
(as measured by VEI or column height; [Clarke et al. 2007;
Bain et al. 2019; Wright et al. 2023]), although melt compo-
sition (viscosity) also plays a role. Additional measurements
of volatile contents in either melt inclusions [e.g. Bouvet de
Maisonneuve et al. 2012; Cassidy et al. 2016; Stock et al. 2016;
Ruth et al. 2018; Wright et al. 2023] or matrix glass [e.g. Ed-
monds 2001; Cashman and McConnell 2005; Wright et al.
2007; Myers et al. 2014] can help to assess pre-eruptive stor-
age pressures within a conduit; zoning patterns of crystal rims
can further refine magma storage and ascent history [e.g. Al-
lan et al. 2013; Coote and Shane 2016; Vásconez Müller et al.
2022; Wright et al. 2023].

2.2 Mazama eruption

2.2.1 Constructing a magma reservoir

The magma reservoir that ultimately produced the climactic
eruption was constructed over 40–50 ka [Bacon and Druitt
1988; Karlstrom et al. 2015]. The evolution of the growing
magma reservoir is evidenced by at least three small rhyo-
dacite eruptions between ~27 and 18 ka that represents leaks
from the system. Andesitic enclaves preserved information on
the mafic inputs to the system and are classified chemically as
low-Sr (LSr), in comparison to later high-Sr (HSr) andesitic in-
puts. LSr enclaves are notable in having 238U-excess, which is
rare in Cascade lava and suggests melting and assimilation of
hydrothermally altered upper crust [Ankney et al. 2013]. Ad-
ditional support of the importance of hydrothermal alteration
in developing the climactic magmatic system comes from O
isotope data [Bacon et al. 1994]. Spatial patterns of eruptive
activity further suggest that during this time period the bulk
magma input into the system increased because of both an
increase in deep magma flux and an expanding zone of dike
capture created by the growing magmatic system [Karlstrom
et al. 2015].

2.2.2 Eruption precursors

Knowledge of the 7627 ± 150 yr BP [Zdanowicz et al. 1999]
Mazama eruption and its precursors rests primarily on founda-
tional work by Bacon and co-workers [e.g. Bacon 1983; Bacon
and Druitt 1988; Druitt and Bacon 1989; Bacon et al. 1992;
Mandeville et al. 2009]. This work demonstrated that the
largest and most explosive precursory eruptions were those
of Llao Rock and Cleetwood.
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Figure 1: Main tephra fall units from precursory and the climactic Mazama eruptions. The thinnest mapped isopach of each
eruptive phase is shown in panels [A]–[C], each isopach is labelled with the thickness reported in cm or T representing trace
amount. The fill colour of each isopach corresponds to the eruption magnitude [M=log10(erupted mass) -7 Pyle 2000], as shown
in the legend in panel [A] and inferred from Young [1990]. Two key localities referred to in this study are shown as red circles in
panel [B], Mount Bachelor (MB) and Upper Kirk Road (UKR). Panel [B] also contains an inset map showing the position of panels
[A]–[C] (red square) in relation to the distal Mazama deposit [Buckland et al. 2020]. [A] Isopachs for the Llao Rock [Young
1990], Lower Cleetwood (LCW) and Upper Cleetwood (UCW [Wiejaczka and Giachetti 2022]). [B] Isopachs for the climactic units
dispersed ESE from the vent; the basal ash bed (BAB) and eastern lower pumice unit (ELPU [Young 1990]). [C] Isopachs of
the northern lower pumice unit (NLPU), divider ash bed (DAB) and upper pumice unit (UPU [Young 1990]). Also shown is the
outline of the ignimbrite deposit that was deposited in the final phase of the climactic eruption [Williams 1942]. [D] i) Annotated
photograph of the tephra section at Mount Bachelor showing the NE dispersed units (NLPU, UPU, and trace DAB); ii) Sketch
stratigraphic log of auger recovered samples from Upper Kirk Road with absolute thicknesses used from equivalent site 47 in
Young [1990]. *BAB was not recovered in this study as our sampling method was not sufficiently precise to sample the 5.5 cm
thick deposit.
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Llao Rock issued from a vent on the NW rim of the current
caldera (Figure 1A). Carbon dates suggest that the eruption
preceded the climactic event by up to 200 years, but recent
analysis of a high-resolution lake core refines this estimate to
~75 years [Baig and Gavin 2023]. The eruptive deposits, which
are relatively fine-grained [Young 1990], include a pumice fall
deposit to the SE (>2 km3 bulk volume; Young [1990]; Fig-
ure 1A) followed by a large (0.5 km3 DRE [dense rock equiva-
lent]) rhyodacite flow. Proximal deposits are zoned in compo-
sition, with early-erupted magma significantly more evolved,
hornblende-rich and more depleted in volatiles (S and Cl) than
the later Cleetwood and climactic eruptions [Bacon and Druitt
1988; Mandeville et al. 2009]. This LSr magma body that fed
this eruption is assumed to have resided at a relatively shal-
low level NW of the main magma body. The associated lava
flow is unusually enriched in vesicular HSr andesite inclu-
sions, which represent a new and distinct mafic input into a
shallow (and partially degassed) reservoir [Bacon and Druitt
1988].
The Cleetwood vent lies on the NE rim of the current
caldera [Bacon 1983] and produced two explosive phases doc-
umented by a well-defined Plinian fall deposit (~0.7–1 km3
DRE) ESE of the vent [Young 1990; Wiejaczka and Giachetti
2022, Figure 1A] which was followed by a 0.6 km3 rhyodacitic
lava flow [Bacon 1983]. The Cleetwood rhyodacite also in-
cludes HSr andesite enclaves that represent at least two differ-
ent mafic inputs into the magmatic system [Bacon and Druitt
1988]. A range of Sr isotope compositions confirms the diver-
sity of parent magmas [Bacon et al. 1994]. Examination of the
20 m-thick proximal tephra sequence immediately underlying
the lava flow shows variations in tephra components and grain
size consistent with an unsteady eruption [Bacon 1983; Young
1990; Bourgeois 1998]. Constituent pumice clasts preserve a
wide range of microlite textures (number density, size distri-
bution and overall crystallinity) that testify to decompression
paths that varied throughout the eruption sequence [Bourgeois
1998; O’Donnell and Gardner 2022]. The erupted magma is
compositionally identical to that erupted from the climactic
magma reservoir [Bacon and Druitt 1988]. Welding of cli-
mactic pumice on the still-hot Cleetwood rhyodacite flow and
slumping of that flow into the newly formed caldera demon-
strate that the climactic eruption sequence initiated shortly af-
ter the Cleetwood activity [Bacon 1983; Kamata et al. 1993]. A
puzzling question, then, is why the Cleetwood eruption ended
with lava effusion, and why the climactic eruption initiated
within weeks to months from a nearby vent.

2.2.3 The climactic eruption sequence

The climactic eruptive sequence has been divided into sin-
gle vent and ring vent phases [Bacon 1983]. The single vent
phase started with deposition of a phreatomagmatic basal
ash bed (BAB; Figure 1B); this was followed by two sepa-
rate Plinian phases that generated the lower (LPU) and upper
(UPU) pumice fall units, which are distinguished not only by
their different aerial distributions (Figure 1), but also by the
distinctive ‘salt-and-pepper’ texture of the LPU [Young 1990].
The LPU was mapped as bilobate by Young [1990] as no strati-
graphic section preserved the LPU as two distinct units sepa-

rated by either a change in texture or grain size. By this assess-
ment, the LPU lies well within the Plinian field of Pyle [1989].
Overlying the northern lobe of the lower pumice (NLPU) is an
intervening divider ash bed (DAB) (Figure 1C; Young [1990]).
The DAB is inferred to represent a temporary eruptive pause;
however, the origin of pause is unknown. Magma erupted
during the single vent phase is compositionally uniform rhy-
odacite, with only minor inclusions of HSr andesitic scoria.
Taken together, the petrology and field data suggest that
the evolution of the climactic magma reservoir included pe-
riodic recharge by, and subsequent fractionation of, at least
two distinct andesitic magmas, one HSr and one LSr. Contri-
butions of these two recharge magmas to the evolved rhy-
odacite are evident in both bulk magma compositions and
the variable Sr content of plagioclase at constant anorthite
content. LSr recharge magma supplied the earliest precur-
sory eruptions (including the explosive component of the Llao
Rock eruption); HSr recharge magma is present as enclaves
in the Llao Rock magma and dominates the late precursory
and climactic eruptive sequence. These data have been incor-
porated into a conceptual model of the magma reservoir as a
sill-like melt lens overlying a crystal mush, which is period-
ically recharged at the mush-melt interface by either HSr or
LSr andesite [Wright et al. 2012]. Studies of phenocryst-hosted
melt inclusions provide further evidence of late-stage recharge
of HSr andesitic melt (with associated high H2O and S [Bacon
et al. 1992; Mandeville et al. 2009]). Perhaps more surpris-
ing is evidence for substantial open system degassing prior to
the climactic eruption, evidence that includes (1) an apparent
absence of trapped CO2 in melt inclusions from Cleetwood
and climactic pumice, and (2) isotopic evidence that as much
as 50 % of the S component could have been lost by pre-
eruptive open-system degassing. Also interesting is the wide
range in melt inclusion dissolved water contents (3–7 wt.%),
which yield saturation pressures equivalent to a depth range
of 4–12 km for pyroclasts from precursory, as well as climac-
tic, activity. A fundamental question is whether these data
record eruption storage depths immediately prior to eruption
or whether the melt inclusions were trapped early, and the
host crystals later transported to shallow levels.

3 METHODS
To improve our understanding of the onset of the climac-
tic eruption, we analysed ash samples from both the eastern
(ELPU) and northern (NLPU) lobes of the LPU, the DAB, and
the UPU.

3.1 Field sampling and laboratory preparation

We investigated the Mazama fall deposits at two key sites (Fig-
ure 1). At the Mount Bachelor site, we dug a 1.5 m-deep tephra
pit where we observed two well-sorted fall deposit units, the
NLPU and the UPU (Figure 1D), as well as a thin (<1 cm)
ash-rich horizon between the two fall units correlating to the
DAB. Here the base of the NLPU is in direct contact with a
layer of black scoria and the top of the UPU is overlain by a
fine-grained unit (co-ignimbrite ash) that grades into a mix-
ture of tephra and topsoil (Figure 1Di). The Upper Kirk Road
site (Figure 1) was included to examine the ELPU. Here we
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used an auger to sample the deposit because of the thickness
of the overlying ignimbrite. To ensure that we sampled the
ELPU, we correlated changes in the componentry and grain
size of the material we retrieved in the field to thickness, grain
size and componentry data collected by Young [1990] at three
locations near the Upper Kirk Road site (sites 46, 47, and 58
in Young [1990]; Figure 1Dii). We were confident that we had
reached and sampled the ELPU when we recovered the dis-
tinctive salt and pepper fine-grained pumice lapilli. Here the
ELPU lies below 38 cm of coarser grained yellow to white
pumice-dominated lapilli in the UPU.
All samples were dried in a 60 °C oven overnight and split
to obtain an aliquot for analysis. We manually dry-sieved the
samples of −3 to 3Φ (8 mm to 125 µm) in half-Φ intervals to
quantify the coarse grain size distribution by the percentage of
mass in each sieve fraction (mass %; see Supplementary Mate-
rial 1 for complete grain size data). We mounted the coarsest,
modal and 2Φ sieve fractions from each sample in EpoFix
resin by Struers then polished the ring mounts to expose par-
ticle interiors using diamond suspensions in 9, 3, and 1 µm
increments.

3.2 Scanning electron microscope (SEM)

All polished mounts were carbon coated and imaged using ei-
ther the Hitachi S-3500N Scanning ElectronMicroscope (SEM)
at the University of Bristol or the Apreo 25 SEM at the Uni-
versity of Oregon in backscattered electron (BSE) mode. Grid
images of the 2Φ ash mounts were collected for quantitative
componentry assessments using a working distance of 16 mm,
an accelerating voltage of 15 or 20 kV and typically 100–250×
magnification, which gave optimal resolution for component
identification. Individual, high-resolution BSE images were
also collected for particles of interest in each sample from
all mounted sieve fractions, particularly ash particles with
high microlite contents or other features atypical of climactic
Mazama products. We also imaged non-juvenile (holocrys-
talline) particles, identified based on the absence of matrix
glass and commonly, evidence of alteration, and crystals that
record complex zoning and or rim growth habits.
We quantified the componentry of the 2Φ ash (modal grain
size) across the different fall units (NLPU, DAB, and UPU) pre-
served at the Mount Bachelor site from the gridded BSE im-
ages. The particles in each sample were assigned one of five
categories: phenocrysts, microlite-bearing glass, microlite-free
glass, vesicular glass or non-juvenile. Point counting of each
particle type was used to calculate the relative proportion of
each component in every sample (see Supplementary Material
1 and Supplementary Material 2). Because of the coarser grain
size of the Upper Kirk Road site, the 2Φ grain size did not rep-
resent the mode and therefore a direct comparison with the
Mount Bachelor units was not possible. We did, however,
examine components in the 2Φ, 1.5Φ, and 1Φ size classes
for comparison (see Supplementary Material 2 for the gridded
BSE-SEM images).
Selected BSE images were analysed for matrix plagioclase
crystallinity and crystal number density (number per mm2,
NA). The limited grey scale contrast between the crystals and
groundmass required outlining the crystals by hand; for this

reason, we limited analysis to characterising the range of tex-
tural characteristics. Crystal characteristics were measured
using the freeware program Fiji (ImageJ); both plagioclase
area fraction (crystallinity) and number density were refer-
enced to the measured groundmass area (excluding vesicles).
Crystal shapes were measured by using Fiji to determine the
major and minor axes of the best-fit ellipse.

3.3 Electron microprobe

Major element glass chemistry was measured by electron
probe microanalysis (EPMA) using a JEOL JXA8530F Hy-
perprobe at the University of Bristol. We analysed a range
of groundmass, melt inclusion and embayment glasses. The
conditions for analysis were a 5 nA beam current, a 10 µm
spot size and an accelerating voltage of 15 kV. All elements
were counted on-peak, and the count times were adjusted for
each element to minimise beam damage. K, Ca, Si, Na, and
Al were analysed first for 10s, Ti and Mg (60 s), and Fe, Mn,
Cl (50 s). Secondary standards were analysed at the start and
end of each analytical session to ensure that no drift had oc-
curred. Only analyses with totals >97 wt.% were retained and
20–30 individual analyses were collected per sample. All data
were normalised to 100 wt.%; totals below 100 wt.% are at-
tributed to secondary hydration, which is common in older
tephra deposits [Fontijn et al. 2016; McNamara et al. 2018].
Plagioclase crystals from each unit were analysed using the
JEOL Hyperprobe at the University of Bristol. We used two
beam currents for analysis. The elements K, Ca, Si, Al, and
Na (40 s) were analysed using a 10 nA beam current which
was increased to 100 nA for analysing Ti, Mg, Sr and Fe (40 s).
All analyses used a 1 µm spot size and an accelerating volt-
age of 20 kV and all elements were counted on-peak. The
SPH Labradorite secondary standard was analysed through-
out the duration of data acquisition with no variability or drift
observed. At least 12 plagioclase crystal rims were analysed
per sample. All major element and crystal composition data
are available in Supplementary Material 1, including the sec-
ondary standard analyses.

4 RESULTS
4.1 SEM particle characterisation and image analysis

Ash from the Mount Bachelor site (Figure 1) includes the
NLPU, DAB, and UPU (Figure 1). Quantitative componen-
try classification (Supplementary Material 1) shows that the
NLPU and DAB units contain a significant proportion of
microlite-bearing glass (13–25 %) and non-juvenile (12–30 %)
components that are not expected in deposits from a large
Plinian eruption (Figure 2A–2I). Instead, they are more simi-
lar to components of the precursory Llao Rock and Cleetwood
eruptions [Bourgeois 1998; O’Donnell and Gardner 2022]. Ad-
ditional components include variably vesicular glass, some
with highly deformed vesicles, and pronounced narrow rims
on plagioclase microlites that indicate rapid late-stage growth.
Phenocrysts account for ~30 % of 2 Φ ash in the NLPU and
DAB; plagioclase phenocrysts are dominant and typically have
rapid growth textures preserved at the outermost rim (Fig-
ure 2C, 2I). At this site (~100 km from the eruptive vent), UPU
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Figure 2: Compilation of BSE images of particles from the lower units (LPU and DAB) of the climactic Mazama eruption. Each
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“complex crystal growth and zoning”. Each row relates to the sub-unit of the climactic tephra which is also shown by the border
colour of the image. Yellow scale bars are 100 µm; 10 µm scale bars are in white and are labelled for clarity.
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ash has up to 88 % phenocrysts; most are plagioclase and may
be either complete or broken and preserve a range of normal
and reverse zoning (Supplementary Material 1 and Supple-
mentary Material 2).
Ash from the Upper Kirk Road site was analyzed to charac-
terize emissions from the eastern lower pumice lobe (ELPU;
Figure 1). This deposit also includes a range of glassy,
microlite-rich and non-juvenile particles (Figure 2). This de-
posit also includes an ash component that is distinct from
those of the NLPU and DAB (Figure 2N). It is characterized
by extremely anisotropic crystals of both plagioclase and py-
roxene and vesicles that form incipient diktytaxitic textures
(see Supplementary Material 2 for additional images). Also
unusual are sector-zoned plagioclase, which occur as isolated
microphenocrysts (Figure 2L) as well as microlites in the dik-
tytaxitic clasts (Supplementary Material 2).

Plagioclase microlite crystallinity
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Figure 3: Plagioclase microlite crystallinity versus areal num-
ber density of lower pumice unit samples. Large square and
diamond symbols are newly collected for this study. Data plot-
ted as small circles are fromWright et al. [2023] and have been
grouped according to eruption style and/or the source eruption
(please see Wright et al. [2023] for the appropriate references
for the crystallinity data).

The plagioclase microlite crystallinity measured from 11
LPU BSE-SEM images ranges from 1 to 41 %, and the areal
number density spans one order of magnitude from 1365 to
90,507 mm−2 (see Supplementary Material 1). Interestingly
when compared to published ash crystallinity data (Figure 3),
we see that all but one of the ash particles analysed from
the ELPU overlap with values measured from Vulcanian style
eruptions (e.g. eruptions from Galeras, Shinmoedake and Au-
gustine [Wright et al. 2023]). On the other hand, the high
NLPU crystallinity and NA values are more like those mea-
sured from the precursory ash from Mount St. Helens 1980
eruption by Cashman and Hoblitt [2004], Figure 3).

4.2 Glass and plagioclase compositional data
Glass data for the Cleetwood, ELPU, NLPU, and UPU fall units
are shown in Figure 4. Data for individual units span differ-
ent ranges on bivariant element plots. Particularly striking
are the different trends recorded in the alkali and TiO2 data
for the ELPU (Figure 4J, 4K). Specifically, the ELPU spans
a wider range of groundmass SiO2 (70–77 wt.%) and MgO

(0.05–0.73 wt.%) than the other fall deposits. Here the high
SiO2/low MgO groundmass analyses correspond to microlite-
bearing glass particles with very high crystallinity (Figure 2M)
while the high Cl glass is found exclusively as the matrix of
diktytaxitic particles (Figure 2K). Some melt inclusions anal-
ysed from the NLPU record >74 wt.% SiO2, which exceeds
most matrix glass analyses and is equivalent to the upper SiO2
range reported for the evolved Llao Rock pyroclasts [Mandev-
ille et al. 2009]. Cleetwood melt inclusions, in particular, are
notable for their Cl range (Figure 4O).
Plagioclase rim compositions are reported by unit in Fig-
ure 5. Data from NLPU and DAB ash show little variation,
with An ~40 and Sr values <2000 ppm, a LSr characteris-
tic. Data from ELPU ash particles, in contrast, show a much
wider range in Sr for similar An contents. Plagioclase with
HSr (>2000 ppm) compositions requires recharge by HSr an-
desite [Druitt and Bacon 1989]. Our data are unusual, however,
in preserving an HSr signature at low An contents (~An40);
Druitt and Bacon [1989] find that high Sr plagioclase is con-
fined to plagioclase contained within late-erupted HSr scoria
with An>50 (Figure 5E). We find similar plagioclase rims in
the UPU (Figure 5A), which includes HSr scoria during the
final stages of the climactic eruption [Druitt and Bacon 1989].

4.3 Rhyolite-MELTS modelling

We used Rhyolite-MELTS to model the melt evolution of the
climactic Mazama products [Gualda et al. 2012, Figure 6]. We
ran the thermodynamic model with different starting compo-
sitions including whole-rock data fromDruitt and Bacon [1989]
and the composition of the least evolved groundmass from the
ELPU (see Supplementary Material 1). Initial H2O contents
ranged from 4–7 wt.% and calculations were performed under
both isothermal (decompression) and isobaric (cooling) condi-
tions. Crystallization paths differ most markedly in the be-
havior of TiO2, which tracks crystallization of ilmenite. Here
isobaric cooling produces a trend of decreasing TiO2 with in-
creasing SiO2, which indicates ilmenite fractionation. Only
some isothermal runs produced ilmenite (Supplementary Ma-
terial 1). Comparison with measured glass data shows that
isothermal decompression appears to best explain NLPU glass
compositions and a subset of ELPU compositions. Isobaric
cooling, in contrast, best explains the prominent trend of de-
creasing TiO2 with increasing SiO2 that characterizes much
of the ELPU glass data (Figure 6).

5 DISCUSSION
The data presented above provides evidence that the ash
component of deposits from the climactic eruption sequence
preserves a record of short-term, and often shallow, conduit
processes known to modulate patterns of precursory activity.
Here we place that evidence in a stratigraphic context and use
these data to suggest that the climactic eruption sequence ini-
tiated with at least two Plinian (?) eruptions represented by
the eastern and northern lower pumice units that were likely
closely spaced in time but from separate vents. The overly-
ing DAB appears to record another, smaller, eruption prior to
the final climactic eruption, as represented by the UPU. Dis-
tinctive ash textures and compositions found within the ELPU
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Figure 4: Major and minor element glass geochemistry of subunits within the climactic Mazama eruption. All plots show new
data collected for this study as circles and reference data as triangles. Open symbols are melt inclusion analyses whereas filled
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dard) is within the size of the plotting symbol.

further suggest that this eruption may have tapped a different
source than that of the subsequent NLPU and UPU eruptions.

5.1 Groundmass textures

Groundmass textures record conditions of magma ascent to
the surface [e.g. Hammer et al. 1999; Cashman and McConnell
2005; Clarke et al. 2007; Martel 2012; Wright et al. 2012; Bain
et al. 2019; Preece et al. 2023]. Plagioclase provides a par-
ticularly detailed record of the decompression history of hy-
drous magma because of its sensitivity to the decreasing water
content of the melt with decreasing pressure [Cashman 1992;
Dunbar et al. 1995; Blundy and Cashman 2001; Cashman and
Hoblitt 2004; Blundy and Cashman 2005; Cassidy et al. 2015;
Waters et al. 2015; Humphreys et al. 2016; Cashman 2020].
Specifically, the number density of plagioclase crystals (mea-
sured as either number per area or number per volume) is a
measure of nucleation efficiency, which is a function of both
decompression rate and magma composition. The overall
abundance of plagioclase (measured as either area or volume
fraction) reflects the combined efficiency of crystal nucleation
and growth, again a function of decompression rate (time) and

composition (viscosity/element diffusivity). When eruptions
are pulsatory, that plagioclase crystallinity corresponds to the
duration of the preceding repose interval [Hammer et al. 1999].
A recent compilation of plagioclase groundmass textures fur-
ther suggests that the maximum microlite number density of
precursor eruptions increases as the intensity of the climac-
tic eruption increases [Figure 2 Wright et al. 2023]. Within
this context, the high plagioclase number densities observed
in ELPU, NLPU, and DAB ash particles (Figures 2 and 3), as
well as in the Cleetwood pumice, indicate a highly pressurized,
but discretized, magmatic system. Episodic eruptions from in-
dividual vents are inferred from stratigraphic evidence (Cleet-
wood [Bourgeois 1998; Wiejaczka and Giachetti 2022]), mixed
microphenocryst and microlite populations in the groundmass
(Figure 2M; see Cashman and McConnell [2005]) and multi-
ple normally zoned growth rims on plagioclase phenocrysts
(Figure 2F). Observed variations in particle vesicularity pro-
vide a record of differential outgassing (Figure 2B, 2E, 2H,
2K, 2N) consistent with the evidence of pre-eruptive degassing
provided by melt inclusion analyses [Mandeville et al. 2009].
Taken together, these data provide a picture of episodic pres-
sure release from different vents, and probably different melt
lenses, as the system built toward catastrophic failure (Fig-
ure 7).

5.2 Immediate precursors to the climactic eruption

The sequence of events that immediately preceded the cli-
mactic eruption included explosive events that deposited the
BAB and ELPU to the SE, overlying deposits of Llao Rock
and Cleetwood eruptions (Figure 1B) and following the mod-
ern dominant wind direction at Crater Lake (Mount Mazama
[Buckland et al. 2022]). Deposits from subsequent eruptions
(NLPU, DAB, UPU), in contrast, are to the NNE. This unusual
wind direction is most common in the fall (autumn), consis-
tent with inferences of eruption season from pollen analysis
[Mehringer et al. 1977]. Thus, although bilobate deposits can
form because of changing wind direction and or plume height
during a single eruptive phase (e.g. Hudson 1991[Kratzmann
et al. 2010]), we think it more likely that there was a (proba-
bly short) time break between deposition of the SE- and NE-
dispersed units.
Textural and compositional data further suggest that the
ELPU and NLPU eruptions may have been fed from differ-
ent melt bodies. We base this interpretation on the distinctive
characteristics of the subset of ELPU ash particles with ‘dikty-
taxitic’ textures (Figure 2N). Diktytaxitic textures are common
in mafic enclaves, including those in older rhyodacite lava
flows from Mazama, and have been used to illustrate con-
ditions of gas-driven filter pressing [Druitt and Bacon 1986].
Here rapid cooling during magma recharge into a cooler host
creates a network of anisotropic crystals; subsequent gas ex-
solution and expansion during magma ascent drives residual
melt out of the crystal network. Ash particles preserved in
ELPU show many of these characteristics. Moreover, no-
table features of these clasts include the extreme elongation
of plagioclase and pyroxene crystals (Supplementary Material
1), unusual sector-zoned plagioclase (Figure 2L, Supplemen-
tary Material 2) and high Cl in the groundmass glass (>2000
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ppm; Figure 4L). These features, together with the incomplete
melt expulsion from the crystal network, can be explained by
rapid quenching at depth. Quenching at depth is supported
by Rhyolite-MELTSmodelling (Figure 6), which indicates that
melt in these clasts records isobaric cooling, in contrast to the
melt evolution paths subsequent eruptive products, which are
better explained by isothermal decompression (Figure 4).

Another unusual feature of ELPU ash particles is the pres-
ence of HSr plagioclase rims on some of ELPU crystals. HSr
plagioclase rims have been described previously as a feature
of in scoria formed from HSr recharge magma [Bacon and
Druitt 1988]. Unlike these data from scoria phenocrysts, how-
ever, HSr plagioclase rims in ELPU particles have the lower
An contents associated with the erupted rhyodacite melt (Fig-
ure 5). Based on this evidence, we suggest that ELPU magma
experienced recharge of HSr magma, most likely in response
to withdrawal of magma during the Cleetwood eruption and
consequent decompression of the underlying magmatic sys-
tem (Figure 7). We further speculate that the ELPU eruption
was fed by an isolated or partially isolated melt lens rather
than tapping the ‘well-mixed’ homogenous climactic rhyo-
dacitic magma proposed by Bacon and Druitt [1988]. This
interpretation accords with recent evidence for isolated melt
lenses in other magmatic systems that have produced caldera
forming eruptions, including Colli Albani [Vinkler et al. 2012];

Huckleberry Ridge and Lava Creek Tuffs, Yellowstone [Myers
et al. 2016; Shamloo and Till 2019]; Santorini [Flaherty et al.
2018; 2022]; and Krakatau [Madden-Nadeau et al. 2021].

Overlapping deposits of the NE-dispersed units (NLPU,
DAB, UPU) is most easily explained by eruption from the same
vent. The NLPU, however, has textural characteristics asso-
ciated with pulsatory activity, particularly the abundance of
microlite-rich ash particles (Figures 2 and 3). The presence of
discrete, thin plagioclase rims further suggests closely spaced
explosions (decompression events [Wright et al. 2023]). Also
notable is the incorporation of crystals with evolved melt in-
clusions (Figure 4G), which can be explained by disruption of
a shallow crystal mush [Kilgour et al. 2013], perhaps the roof of
a larger magma reservoir. The presence of the microlite-rich
DAB between the LPU and UPU signals a final eruptive pause
(Figure 7). Repeated closely spaced eruptions are not unusual
for the hours to days prior to a caldera-forming eruption; as
noted above, similar accelerating activity has been observed
prior to climactic eruptions of Krakatau, 1883, Pinatubo, 1991,
and Hunga-Tonga, 2022.

A remaining question is why the Cleetwood eruption, and
the Llao Rock before it, ended with lava effusion instead of
transitioning immediately to the climactic event. Petrologic
studies [Bacon and Druitt 1988; Druitt and Bacon 1989] show
that the Llao Rock eruption likely tapped shallow-stored LSr
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Figure 7: Cartoon diagram of precursory activity at Mount Mazama. The sequence of eruptive activity is numbered 1 to 10.
[A] The largest precursory tephra formed eruptions; Llao Rock (LR) and Cleetwood (CW) with associated lava flows (hatched
polygons). [B] The eruption of the ELPU from a likely isolated melt lens recording HSr recharge following the Cleetwood eruption.
[C] An abrupt change in dispersal direction and potentially vent location formed the NLPU and DAB likely corresponding to the
shallow magmatic storage beginning to assimilate. [D] By the onset of the >M6 Plinian phase (UPU) the ‘well-mixed’ climactic
rhyodacite has amalgamated at depth. Please note this diagram is not to scale and there remains considerable uncertainty in the
architecture of the magmatic system that fed the Mazama eruption. Similarly, collapse of the caldera means our understanding
of the number and distributions of vents is poor and here we show a simplified, cartoonish reconstruction.

magma (a cupola?) that was compositionally distinct from
the Cleetwood and climactic magma. Physical isolation in a
shallow melt lens could explain the decrease in overpressure
implied by the explosive-to-effusive transition. The appear-
ance of HSr andesite inclusions within the Llao Rock lava
flow provide evidence of new recharge magma, perhaps in
response to unloading during the eruption [Karlstrom et al.
2012]. Although it is more difficult to make the same argu-
ment for the Cleetwood eruption, given its compositional over-
lap with the climactic magma and assumed derivation from
a large and well-mixed magma reservoir [Bacon and Druitt
1988; Druitt and Bacon 1989], the similarities between the two
eruptions are striking: both produced substantial tephra de-
posits (>1 km3) and both were followed by effusion of large
(≥0.5 km3) glassy rhyodacite lava flows. It seems reasonable
to attribute this behavior to a similar cause (Figure 7). Notably,

in style and erupted volume the Llao Rock and Cleetwood
eruptions are similar to recent rhyolite eruptions of Chaiten
and Cordon Caulle, Chile. Both produced tephra deposits with
volumes ~1 km3 and lava flows ≥0.5 km3. Both eruptions also
lasted approximately one year.

Renewed explosive activity could have been triggered by
unloading of the magmatic system because of the Cleetwood
eruption. As noted above, it seems plausible that decom-
pression related to unloading promoted recharge of HSr an-
desite into the magmatic system the fed ELPU activity. Addi-
tional evidence of open-system behaviour prior to the climac-
tic eruption includes reverse zoning of pyroxene crystals [Ba-
con and Druitt 1988] and open-system degassing [Mandeville
et al. 2009]. Such eruption-induced perturbations to the mag-
matic system are consistent with accelerated destabilization
and amalgamation of melt lenses (Figure 7), as suggested by
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detailed studies of other caldera-forming eruptions [e.g. Karl-
strom et al. 2012; Vinkler et al. 2012; Cashman and Giordano
2014; Myers et al. 2016; Swallow et al. 2018; Madden-Nadeau
et al. 2021].
In summary, whilst our textural and geochemical data pro-
vide new insight into the activity that presaged the climactic
stage of the Mazama eruption, additional sampling and anal-
ysis is required to test our interpretations and better under-
stand the processes that prime a magmatic system that ulti-
mately produces a >M7 eruption. Importantly, our samples
were limited to two field sites due to COVID-19 travel restric-
tions and the termination of funded projects in 2021; testing
our hypothesis that the ELPU tapped a distinct melt lens could
be achieved by interrogating trace element data from melt in-
clusions and groundmass glass, diffusion chronometry along
crystal zoning patterns and reconstructing the volatile budget
of the magmatic system using spectroscopy techniques. Sim-
ilarly, more comprehensive thermodynamic modelling using
rhyolite-MELTS [Gualda et al. 2012] will help reconstruct the
pressure, temperature, time (𝑃 − 𝑇 − 𝑡) histories and phase
equilibria for the individual precursory eruptions, again pro-
viding an opportunity to test our hypothesis that the ELPU
preserves evidence of melt recharge and a different 𝑃 − 𝑇 − 𝑡

trajectory (Figure 6).

6 CONCLUSIONS
Prior studies of the climactic Mazama eruption have focused
on the pumice lapilli (>2 mm) for compositional and crys-
tallinity assessments. Here we have shown the value in
characterizing the texture and composition of ash particles
(<2 mm) in the medial deposits of large magnitude eruptions.
For example, in the analyzed samples, high crystal number
densities are observed only in the ash fraction of the ELPU
and NLPU. The same appears to be true for the surge-forming
eruptions that preceded the climactic phase of the Pinatubo
eruption [Hammer et al. 1999]. Whether this difference is com-
mon is difficult to assess, because the internal textures and
compositions of ash-sized samples are rarely analyzed. Yet
the ash fraction commonly includes contributions from shal-
low dense plugs, plugs that may be efficiently fragmented at
the initiation of each new eruption pulse [Jones et al. 2022].
Deposit characteristics suggest that the immediate run-up to
the climactic Mazama eruption included at least two Plinian
(~M5) eruptions that form the ELPU and NLPU. This adds to
the growing body of literature suggesting that large (~M6+)
eruptions can generate substantial precursory eruptions be-
fore progressing to even larger eruptions. From the geological
record it is hard to pinpoint the difference between the Llao
Rock eruption, which was followed by a long period of qui-
escence, and the Cleetwood-ELPU-NLPU sequence that was
closely followed by the climactic event. The same question
arises for Krakatau 1883, which appears to have had a precur-
sory eruption that was similar to Llao Rock in both style and
occurrence 1–2 centuries before the caldera-forming event.
Both scenarios are concerning for hazard forecasting, as we
cannot currently forecast whether a M5 (~1–2 km3) eruption
is the main event or precursory to a catastrophic eruption.
Our research suggests, however, that analysis of precursory

ash deposits may help to track the evolution of subvolcanic
systems, including providing evidence of recharge that may
precede system destabilization.
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