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DiadFit: An open-source Python3 tool for peak fitting of Raman data
from silicate melts and volcanic fluids

Penny E. Wieser∗ and Charlotte L. DeVitre
Earth and Planetary Science, UC Berkeley, CA, USA.

ABSTRACT
We present DiadFit—an open-source Python3 tool for efficient processing of Raman spectroscopy data collected from fluid
inclusions, melt inclusions and silicate melts. DiadFit is optimized to fit the characteristic peaks from CO2 fluids (Fermi diads,
hot bands, 13C), gas species such as SO2, N2, solid precipitates (e.g. carbonates), and Ne emission lines with easily tweakable
background positions and peak shapes. DiadFit’s peak fitting functions are used as part of a number of workflows optimized
for quantification of CO2 in melt inclusion vapour bubbles and fluid inclusions. DiadFit can also convert between temperature,
pressure and density using various CO2 and CO2-H2O equations of state (EOS), allowing calculation of fluid inclusion pressures
(and depths in the crust), conversion of homogenization temperatures from microthermometry to CO2 density, and propagation
of uncertainties associated with EOS calculations usingMonte Carlo methods. There are also functions to quantify the area ratio
of the silicate vs. H2O region of spectra collected on silicate glasses to determine H2O contents in glasses and melt inclusions.

KEYWORDS: Raman Spectroscopy; Melt Inclusions; Fluid Inclusions; Volcanology; Open-Source; Python.

1 INTRODUCTION
In recent years, Raman Spectroscopy has been increasingly
used by igneous petrologists to perform non-destructive, in-
situ measurements of melt and fluid compositions [Steele-
Macinnis et al. 2011; Morizet et al. 2013; Hartley et al. 2014;
Moore et al. 2015; Schiavi et al. 2018; Giordano et al. 2020;
González-García et al. 2020; Schiavi et al. 2020]. Since 2014,
there has been a growing body of literature using Raman Spec-
troscopy to measure the density of CO2-rich fluids in melt
inclusion vapour bubbles to more accurately obtain the total
CO2 content of the melt inclusion, and thus the magma stor-
age depth [Hartley et al. 2014; Moore et al. 2015; Lamadrid et
al. 2017; Allison et al. 2021; Wieser et al. 2021; DeVitre et al.
2023b]. Raman spectroscopy also shows enormous potential
to quantify the densities of CO2-rich fluid inclusions [Wang et
al. 2011; Kobayashi et al. 2012], allowing rapid and precise es-
timates of magma storage depths [Dayton et al. 2023; DeVitre
and Wieser 2024; Zanon et al. 2024].
However, while there have been a large number of stud-
ies optimizing calibration and analysis protocols for CO2-rich
fluids by Raman Spectroscopy [e.g. Lamadrid et al. 2017;
Bakker 2021; DeVitre et al. 2021], there has been compara-
tively less focus on improving software tools for Raman peak
fitting in volcanology [e.g. Yuan and Mayanovic 2017]. A
number of highly flexible Python packages for fitting Raman
spectroscopy data are available (e.g. Rampy [Le Losq 2018],
RamanSPy [Georgiev et al. 2023]). At the other end of the spec-
trum, van Gerve and Namur [2023] published a Python-based
graphic user interface for the specific use case of quantify-
ing H2O contents of silicate glasses. However, there are no
packages providing optimized workflows for the various pro-
cedures used to quantify CO2 in volcanological systems. In-
stead, many studies use proprietary peak fitting software from
Raman instrument companies [e.g. Moore et al. 2015], which
∗Q penny_wieser@berkeley.edu

affects reproducibility because data is collected (and thus pro-
cessed) on different Raman instruments (e.g. WITec, HORIBA,
Bruker, Renishaw). Another popular approach is to use the
open-source peak fitting GUI Fityk [Wojdyr 2010]. While
scripting is possible in this tool, most users fit curves by man-
ually clicking to select peak and background positions [e.g. De-
Vitre et al. 2021]. Other studies use OriginLab software which
has an annual subscription fee of ∼200 USD per license per
year [e.g. Hartley et al. 2014], or have developed their own
Matlab/Python codes for specific workflows and instruments
[e.g. Allison et al. 2021; Wieser et al. 2021].

DiadFit is a high-level Python package which aims to
bridge the gap between generic Raman packages which allow
experienced coders to build highly customizable workflows
for the specific application of interest, and easier-to-use GUI-
based methods which are hard to automate. DiadFit is aimed
at volcanologists with a wide range of coding experience. As
well as providing functions for peak fitting, this package also
addresses the fact that there are no widely-available Python
tools for common calculations associated with fluid inclusion
data, such as calculating CO2 densities from microthermom-
etry data, and converting CO2 densities from fluid inclusions
into pressure and depth using the CO2 or CO2-H2O equation
of state. At present, EOS calculations are typically performed
using computer programs with a graphical or text-based user
interface (e.g. FLINCOR [Brown 1989], FLUIDS [Bakker 2003]),
which can be difficult to install on modern operating sys-
tems. Many available tools require calculations to be per-
formed manually for each fluid inclusion, with no efficient
way to propagate uncertainties in input parameters.

By integrating functions for peak fitting and subsequent
EOS calculations into a single package, entire workflows can
be performed in DiadFitwithout having to swap between dif-
ferent software tools (Figure 1). In addition to reducing time
spent data processing, DiadFitwill also result in more consis-
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Figure 1: Schematic diagram showing the different workflows that can be performed in DiadFit. MI = melt inclusion.

tent fitting between different groups, increasing reproducibil-
ity. For example, to align with FAIR principles (Findable,
Accessible, Interoperable, Reproducible), users can publish a
supporting folder containing their spectra, relevant metadata,
and Jupyter Notebooks showing exactly how spectra were
fitted and subsequent calculations performed [e.g. Dayton et
al. 2023; DeVitre and Wieser 2024].

The shapes and locations of the Fermi diad and Ne lines
are well defined, and spectra collected on any given Raman
instrument have similar features; DiadFit capitalizes on this
similarity to automate many workflows. Each user should

tweak generic peak fit parameters for their specific analytical
set up until they get good visual fits to representative spectra
and acceptable residuals/peak fitting errors. Then, hundreds
of spectra can be fitted automatically within minutes using
the tweaked parameters, eliminating tedious (and subjective)
workflows requiring lots of clicking. DiadFit also outputs the
uncertainty associated with each peak fit, which allows for
a deeper appreciation of the errors associated with different
instrument hardware and acquisition conditions.

To demonstrate the time-saving nature of DiadFit, we
compare the time taken to fit Neon lines and CO2 acquisi-
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tions collected over a 24 hour period during instrument cali-
bration by DeVitre et al. [2021] in Fityk vs. DiadFit. Fitting
these spectra took ∼8 hrs using Fityk, and ∼15 minutes us-
ing DiadFit on a typical laptop with 16 GB of RAM and an
i7 processor. Given the potential for fluid inclusion analyses
to provide rapid estimates of magma storage depths during
volcanic crises [Dayton et al. 2023; DeVitre and Wieser 2024;
Zanon et al. 2024], it is vital to speed up data processing as
much as possible to reap the full benefits of this speedy tech-
nique. We anticipate that users who are not familiar with
Python will simply use the provided Jupyter Notebooks and
narrated YouTube videos, changing simple parameters like
the path to their files and peak fit parameters to adjust for the
different appearance of spectral peaks on different Raman in-
struments. More experienced coders can adapt the base func-
tions in DiadFit to create their own workflows to address
whatever science question they desire.

2 CODE INSTALLATION, UNDERLYING DEPENDENCIES,
AND ARCHITECTURE

For detailed instructions on code installation, dependencies
(i.e. underlying packages required by DiadFit), and supported
file types, we refer readers to the ReadTheDocs page∗. Briefly,
DiadFit is available on PyPI†, so can be installed using pip
within a JupyterNotebook or through the command prompt.
DiadFit uses a number of functions from different Python li-
braries. The SciPy [Virtanen et al. 2020] find_peaks function
is used to identify approximate peaks positions and attributes
such as height, prominence, and presence/absence of certain
peaks (based on pixel values, not fitted spectra). These esti-
mated peak parameters can be used to subdivide spectra into
groups with similar characteristics prior to fitting. Grouping
spectra by characteristics (e.g. Figure 2) and having good esti-
mates of peak position and prominence greatly increases com-
putational efficiency during iterative fitting of multiple over-
lapping peaks. Peak-fitting functions utilize the Python pack-
age lmfit, which supports iterative fitting of different peak
types (e.g. Gaussian, Voigt, Pseudovoigt) and provides er-
rors on peak fitting parameters (e.g. peak center, area, am-
plitude) from the covariance matrix. Numpy [Harris et al. 2020]
is used for all basic math and regression operations, includ-
ing fitting splines to spectra, and extracting subregions from
spectra. Pandas [The pandas development team 2020] is used
for importing data from spreadsheet-type datafiles (.xlsx, .csv),
and to output fit parameters in a tabular format. Matplotlib
[Hunter 2007] is used for all plots produced by functions. EOS
calculations using the Span and Wagner [1996] model are im-
plemented through CoolProp [Bell et al. 2014]. This pack-
age is not a dependency for all of DiadFit, but if users want
to perform calculations using this model, they need to have
CoolProp installed (else they will receive an error containing
installation instructions). Calculations using this EOS should
cite both DiadFit and CoolProp.

∗https://DiadFit.readthedocs.io/en/latest/
†https://pypi.org/project/DiadFit/

3 PYTHON JARGON
A user interacts with DiadFit by calling various functions.
Each of these functions requires specific input parameters
(called arguments). Five main datatypes are used in DiadFit
as inputs/arguments and outputs:

1. A "string" is a piece of text. These are used to tell a
function something about the data input, or specify a certain
thing you want the function to do. For example, users must
specify their filetype when using functions that load in spectra
(e.g. spectra_filetype='headless_txt').
2. A numpy.array is a column or array of data without
headings. DiadFit uses these to store spectral data after it
has been extracted from proprietary instrument files. The
wavenumber is stored in the 1st column (index 0 in Python),
and the intensity in the 2nd column (index 1 in Python). Numpy
allows for very fast computation.

3. A pandas.Series is a column of data with a heading.
4. A pandas.DataFrame is a collection of pandas.Series,
and can be visualized as a single sheet in an excel work-
book with labelled columns. In DiadFit, these are used
to store peak fit parameters in columns with column head-
ings (Figure 5). Information in a given column of the
dataframe (called df) can be accessed using the column head-
ing: df['column_heading'].
5. dataclasses are used to define default peak finding and
fitting configurations. These defaults can be tweaked as much
or as little as required for each specific Raman spectrome-
ter. For example, the default parameters for fitting Diad1 are
stored in the dataclass diad1_fit_config:

diad1_fit_config(model_name='PseudoVoigtModel',
fit_peaks=2, fit_gauss=False,
gauss_amp=1000, diad_sigma=0.2,
diad_sigma_min_allowance=0.2,
diad_sigma_max_allowance=5,
N_poly_bck_diad1=1,
lower_bck_diad1=(1180, 1220),
upper_bck_diad1=(1300, 1350),
diad_prom=100, HB_prom=20,
x_range_baseline=75, y_range_baseline=100,
plot_figure=True, dpi=200,
x_range_residual=20)

The input argument model_name='PseudoVoigtModel' spec-
ifies that the diad and hot band peaks should be fitted with a
PseudoVoigt function, which is a weighted sum of a Gaussian
and Lorentzian distribution that share values for amplitude,
center, and full width half maximum. A Voigt distribution
function can be used instead by editing this argument:

pf.diad1_fit_config(model='VoigtModel')

Any number of these inputs can be tweaked in this manner.
For example, if the user only wants one peak (e.g. for weak
spectra), wants to fit a third degree polynomial to the back-
ground, and wants saved figures showing spectra fits to have
a dpi of 300:
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diad1_fit_config(model='VoigtModel',
fit_peaks=1, N_poly_bck_diad1=3, dpi=300)

Once these dataclasses are tweaked for a given instrument/set
of samples, they can be used to automatically loop through
large numbers of spectral files.

4 WORKED EXAMPLES
We have produced a number of example Jupyter Notebooks
demonstrating specific workflows. These notebooks are avail-
able on GitHub∗ and the ReadTheDocs page†. We include
Notebooks showing how to:

1. Fit peaks from CO2-rich fluid inclusions and melt in-
clusion vapour bubbles and correct data for instrument drift
using Ne line acquisitions. Some of these examples also show
how to quantify the area of carbonate and SO2 peaks, and
calculate molar ratios of different gas species (Figure 1A–D).

2. Perform calculations using the CO2 and CO2-H2O equa-
tion of state, including converting homogenization tempera-
tures from microthermometry into CO2 densities, converting
CO2 densities from Raman or microthermometry into pres-
sures, and then converting these pressures to depths using
different crustal density profiles (Figure 1F–H).

3. Propagate uncertainty in microthermometry and Raman-
based fluid inclusion barometry into pressure and depth dis-
tributions (Figure 1J, K).

4. Model fluid inclusion re-equilibration for different
magma ascent, stalling and quenching scenarios following De-
Vitre and Wieser [2024] (Figure 1I).

5. Quantify peak asymmetry using the approach of DeVitre
et al. [2023a] to help identify fluid inclusions which contain
both liquid and vapour phases at the time of analysis (Fig-
ure 1E).

6. Quantify H2O contents in silicate glasses using an ap-
proach adapted from Di Genova et al. [2017] and Schiavi et al.
[2018] (Figure 1N).

7. Quantify the ratio of H2O to silicate glass peaks on Ra-
man acquisitions taken on unexposed olivine-hosted melt in-
clusions (Figure 1M, N).

8. Propagating uncertainties from Raman measurements,
volume determinations, and melt density calculations when
determining the contribution of vapour bubble CO2 to the to-
tal CO2 budget of melt inclusions (Figure 1L).

5 FITTING THE CO2 FERMI DIAD
The Raman spectrum of CO2 consists of two relatively strong,
well-defined peaks collectively termed the Fermi diad. These
peaks result from the interaction of a symmetrical stretching
mode and an active bending mode in the CO2 molecule by
∗https://github.com/PennyWieser/DiadFit
†https://DiadFit.readthedocs.io/en/latest/

the process of Fermi resonance [Fermi 1931; Rosso and Bod-
nar 1995; Lamadrid et al. 2017]. One of the peaks is centered
at ∼1280–1290 cm−1 (referred to as Diad1), and the second
peak at ∼1386–1390 cm−1 (Diad2). It is well accepted that
the distance between Diad1 and Diad2 (commonly referred
to as splitting, diad splitting, Fermi diad separation, or Δ) cor-
relates with the density of the CO2 fluid. This is because with
increasing CO2 density, Diad1 moves to lower wavenumbers
(shift of 6 cm−1 from 0 to 0.8 g cm−3), while the position
of Diad2 stays more constant (only varying by ∼1–2 cm−1).
The exact relationship between diad splitting and CO2 den-
sity, commonly called a “densimeter”, has been shown to vary
as a function of instrument hardware and acquisition condi-
tions [Lamadrid et al. 2017; DeVitre et al. 2021].
The Fermi diad is flanked by low intensity hot bands
(HB1 at lower wavenumbers than Diad1 and HB2 at higher
wavenumbers than Diad2, Figure 2). These arise from
molecules populating the first excited vibron due to their ther-
mal energy at room temperature, which are also perturbed by
a Fermi resonance effect. The peak height of the HBs rela-
tive to the diad peaks increases with increasing temperature
[Rosso and Bodnar 1995], and in general, hotbands become
more pronounced in spectra collected on denser CO2 fluids.
Diad2 also has a flanking 13C peak at lower wavenumbers
which becomes more visible as the CO2 density increases and
with increasing proportions of 13C relative to 12C [Wang and
Lu 2022]. Fitting these peaks can be used to quantify the rel-
ative abundance of 12C/13C [see Lu et al. 2023].
In the literature, density estimates from CO2-rich fluids
such as melt inclusion vapour bubbles or fluid inclusions have
been obtained by fitting the position of the two diad peaks us-
ing various background models combined with Voigt, Pseu-
dovoigt, Gaussian, or Lorentzian peaks. These peak fitting
routines greatly increase the precision at which the diad split-
ting can be determined relative to the spectral resolution of
the instrument (distance between datapoints). While Raman
instruments typically acquire an intensity reading every 0.1–
1.5 cm−1, the error of the peak position on a fitted peak can
be 10–30× smaller if an appropriate peak profile is fitted (e.g.
Pseudovoigt/Voigt for diads, [Fukura et al. 2006; Lin et al. 2007;
Yuan and Mayanovic 2017], see also Section 9.1). After the
peaks are fit, splitting is calculated and corrected for instru-
ment drift; an instrument-specific densimeter is used to con-
vert corrected splitting into CO2 density [Lamadrid et al. 2017;
DeVitre et al. 2021].
When using DiadFit to peak fit CO2 spectra, the first step
is to find all the spectral files you wish to fit (by filtering based
on file names, Figure 3). Then, a single file is selected, and the
DiadFit function identify_diad_peaks is used to tweak the
SciPy find_peaks parameters, displaying the identified peaks
with yellow stars. This step is necessary because different Ra-
man instruments have vastly different intensities and spectral
resolutions. We find that the prominence, defined as the ver-
tical distance above the neighbouring background, is the most
important parameter to tweak between different instruments
(some instruments have peaks 100s–1000s of counts above
background while others are 100,000–1 million counts above
background). Then, the function loop_approx_diad_fits
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is used to loop through all files to obtain approximate peak
positions and prominences for the diad, hotbands and 13C
peaks for each spectra, which is stored in a dataframe. This
function also calculates various additional parameters that are
very helpful when grouping spectra in later steps (e.g. signal
to noise ratio, elevation of the diad-HB region above back-
ground).
These approximate peak parameters are then used along-
side a filter to remove any cosmic rays present in the spectra.
The filtering process calculates the intensity factor F based on
the intensity (I) of any given spectral datapoint relative to the
intensities of the datapoints to the left (i-1) and right (i+1):

𝐹𝑖−1 =
𝐼𝑖 − 𝐼𝑖−1
𝐼𝑖−1

(1)

𝐹𝑖+1 =
𝐼𝑖 − 𝐼𝑖+1
𝐼𝑖+1

(2)

These two factors are then multiplied together:

𝑀𝑖 = 𝐹𝑖−1 ∗ 𝐹𝑖+1. (3)

If the spectra has a lower intensity to the left of datapoint
i, F𝑖−1 will be >1. If the spectra also has lower intensity on
the right hand side of point i, F𝑖+1 will be >1, so M𝑖 will be
≫1. High values of M𝑖 for individual pixels are indicative
of short, sharp peaks (i.e. most cosmic rays). A datapoint
is considered a cosmic ray if M𝑖 exceeds a user determined
value (e.g. dynfact=0.001). The highest pixel of Diads, HB,
and 13C peaks can also have high M𝑖 values, so any points
with an x coordinate equal to an identified peak position (±
the spectral resolution) are ignored. Users can also enter a
custom range, within which no cosmic rays are removed (e.g.
the area around the narrow SO2 peak). If a cosmic ray is
identified, the filter is run again, in case the cosmic ray was
wider than a single pixel. The pixels identified as cosmic
rays are then removed from the spectrum and a new file is
saved with the same filename with the addition of the suffix
_CRR_DiadFit.
After removal of cosmic rays, the identify_diad_peaks
function is used again to obtain approximate peak parame-
ters without inference from cosmic rays. These parameters
are then used to divide spectra into groups. Dividing spectra
into groups is advantageous because spectra from CO2 flu-
ids vary greatly in their characteristics as a function of the
inclusion size, depth, CO2 density, laser power, and acqui-
sition time (Figure 2). Spectra collected on CO2 fluids with
low densities, at relatively deep depths, or using low laser
power tend to have a weak to non-existent hot bands (Fig-
ure 2A–C). Stronger spectra have prominent hot bands and
13C peaks which overlap with the tails of the diad peaks (Fig-
ure 2D–F). In the strongest spectra, the entire region around
the diad peaks and hotbands is elevated above the near-linear
background seen at greater distance from the diad peaks (Fig-
ure 2G–I). Different fit parameters are needed to obtain satis-
factory fits on these different spectral types.
A full description of the different parameters used for classi-
fication is provided on the ReadTheDocs page, and the most
useful parameters will depend greatly on the Raman instru-
ment and samples. In general, spectra should be classified

as “Weak” when none of the peaks are strong enough to in-
terfere with each other (e.g. Figure 2C, where the hot bands
and diad peaks do not have overlapping tails). Spectra should
be classified in the “Medium” group once the hotbands and
diads begin to overlap substantially. This will likely result
in the user wanting to specify background positions which
are further from the peaks than for the “Weak” group. Often,
a Gaussian background is required in addition to the poly-
nomial background for Diad2. Spectra with very strong hot
bands, clear 13C peaks, and greatly elevated troughs between
diad peaks and HBs should be placed into the “Strong” cate-
gory. These spectra will need to be fitted with the addition of
a Gaussian background to recreate the elevation of the spectra
for both Diad1 and Diad2 (fit_gauss=True, Figure 2I). The
choice of groups is somewhat arbitrary, and is best viewed as
an easy way to be able to set three different peak fit routines.
In many studies, all spectra will fit in a single group. Users
should not stress too much about whether to add a Gaussian
background or not. If a Gaussian background is not really re-
quired (e.g. Figure 2F) but is requested, the code will converge
on a Gaussian with a very small amplitude. Thus, the only
real advantage of putting those not really needing Gaussian
backgrounds into a “Medium” Category is that the iterative
fitting routine will be a bit faster (favorable when fitting large
numbers of spectra).
One file from each group is then used to tweak the fit pa-
rameters (Figure 3), which are applied to all spectra in the
group (taking 1–5 s per spectra on a 16 GB intel i7 laptop).
A figure of each fit is saved in the same folder as the spectra
and displayed in the Notebook—fits should be carefully in-
spected for each spectrum. In particular, attention should be
paid to the subplot showing the residual around the peak, and
the selected background positions and background fit. The
returned dataframe of fitted parameters also contains the un-
certainties in peak positions, which can also be very helpful
for identifying poor fits (Figure 10). In addition to plots for
visual inspection of residuals, this function also calculates a
measure of the residual for each peak:

Residual =
∑√︁

(𝑦meas − 𝑦fitted)2
𝑁points

(4)

where 𝑦meas is the y-coordinate of the background-subtracted
data, 𝑦fitted is the y coordinate of the best composite model fit,
and 𝑁points is the number of discrete points along the x axis
used in the fit.
The next step is to combine the dataframe of peak fit pa-
rameters from each group, and combine this with information
extracted from the metadata. In particular, it is necessary to
obtain the time stamp of the analysis to apply the Ne correc-
tion model. Finally, splittings corrected for instrument drift
are converted into CO2 densities using a instrument-specific
densimeter. Uncertainties from each step of this process are
propagated (see Section 9.1).

5.1 Fitting peaks to secondary phases
Raman spectra collected from fluid inclusions and melt inclu-
sion vapour bubbles commonly contain peaks arising from
other gaseous species (e.g. SO2, N2) or solid phases on the
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classified as “Medium” [D]–[F] have a 13C peak, and the tails of the 13C, diad and HB peak all overlap [F]. In this case, a Gaussian
background was not added, but for any stronger spectra it would be required as the red dots are beginning to diverge from the
best fit line (green curve) inbetween Diad2 and HB2. In spectra classified as “Strong” [G]–[I], the troughs between 13C, Diad2
and HB2 are greatly elevated above the background. This requires a Gaussian background (purple curve) in addition to the three
other peaks (red, blue, cyan) to minimise residuals.

inclusion wall (e.g. carbonates, sulfates [Frezzotti et al. 2012;
Schiavi et al. 2020]). It can be helpful to identify which spec-
tra contain such phases, and quantify characteristics of these
peaks (e.g. peak heights, positions, relative peak areas [Burke
2001]). The first step is to obtain all the spectra you wish to fit
(Figure 4). Then, the function plot_secondary_peaks plots
the spectra in a specific wavenumber range from all selected
files. Intensities are normalized based on the range of inten-
sities in the selected wavenumber window, allowing multiple
spectra to be stacked and inspected. It is clear from this vi-
sualization strategy that files #42 and #33 in Figure 4 have
prominent carbonate peaks. For any given set of spectra, you
can inspect as many regions as you want in this way. For
example, the second panel in Figure 4 is centered around the
SO2 peak at ∼1151 cm−1.
As well as plotting spectra to visually identify secondary
phases, the function plot_secondary_peaks can identify
peak positions within a user-defined wavenumber range us-
ing scipy find_peaks or a prominence filter. Identified peaks

will be marked on the returned figure with a yellow star (Fig-
ure 4). The function also returns a dataframe of approxi-
mate peak parameters based on the maximum pixel (posi-
tion, height, prominence)—where no peaks are found, these
columns are filled with NaNs (“not a number”). After iden-
tifying spectra containing secondary peaks, peak fitting pa-
rameters should be tweaked based on one selected spectrum.
Using the model_name parameter, secondary peaks can be fit
with Gaussian, PseudoVoigt or Voigt curves, or a cubic spline.
Tweaked fit parameters are then applied to all files. More
than one type of secondary peak can be quantified in a given
notebook. Finally, all identified secondary peaks are merged
together with fitting parameters for diad peaks (see Figure 3).

6 FITTING NE LINES
During any given analytical session, there may be some
stretching or contraction of the Raman spectra; these changes
are often referred to as “non-linearity of the Raman shift axis”.
For brevity and to draw parallels with various mass spec-
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cosmicray_filter(), filter_singleray(), filter_raysinloop()
diad1_fit_config()
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stitch_metadata_in_loop(),
extracting_filenames_generic()

fit_diad_1_w_bck()
fit_diad_2_w_bck()

1-5 s
per

spectra

Figure 3: Schematic of the workflow used to efficiently fit diad peaks with very different spectral characteristics.

trometry techniques, we term this “instrument drift”. Com-
monly, instrument drift within the spectral region containing
the Fermi diad is assessed by repeatedly measuring the emis-
sion spectrum of Neon (Ne) produced by a lamp every ∼5–
10 minutes. As well as correcting drift during a given session,
Ne lines are also useful for variations between sessions, al-
lowing continued use of a Raman densimeter months to years
after it was calibrated [DeVitre et al. 2021]. An alternative ap-
proach to correct for instrument drift uses repeated analyses
of a sample/capillary with known CO2 density [Le et al. 2021;
Wieser et al. 2021]. This approach is particularly useful on
instruments without a Ne lamp, or with insufficient spectral
resolution to quantify the narrow Ne peaks.

The Ne emission spectrum has a number of distinctive
“lines,” several of which lie close to the position of the CO2
Fermi diad. The wavelength of the different Ne lines in air
(λ1) are converted into Raman shifts (Δ𝑣) in cm−1 using the
excitation wavelength of the laser (e.g. λ0=532.05 nm; [Lin
et al. 2007]):

Δ𝑣 =
107

λ0 (nm)
− 107

λ1 (nm)
. (5)

Traditionally, a measured diad splitting has been corrected
for instrument drift and non-linearity by comparing the mea-
sured distance between two selected Ne lines (∆MeasuredNe ) and
the theoretical distance between those lines using Equation 5
(∆TheoreticalNe ):

Correction Factor =
ΔTheoreticalNe
ΔMeasuredNe

. (6)

This correction factor is then multiplied by the mesaured diad
splitting:

ΔCorrectedCO2 = Correction Factor × ΔMeasuredCO2 . (7)

This approach has been termed the “line segment” tech-
nique by Bakker [2021], and a typical workflow of how this
method is performed in DiadFit is summarized in Figure 5.
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OR 2 options to ID peak positions

Plot spectra to visually assess peak presence
peaks

see step 3

Identifying and fitting peaks from other phases
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Carbonate peak - PseudoVoigt

SO2 peak - spline

get_diad_files()
Get filenames

generic_peak_config(), plot_secondary_peaks()
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fit_generic_peak()

Inspect all files in a specific spectral region

config peak params for
each phase/distinct peak

Loop through all files using these tweaked parameters Merge with diad peak fitting
parameters. Calculate molar

proportions using instrument factors.

Figure 4: Schematic of workflow used to fit secondary peaks (e.g. carbonate, SO2). Secondary peak fitting results are then
merged with diad parameters (allowing calculation of molar proportions of gas species).

First, identify all the files which contain Ne lines based on
a unique string in their name (e.g. “Ne”). Next, the func-
tion calculate_Ne_line_positions is used to calculate the
wavenumber of each Ne line using the specific wavelength
of the excitation laser, and a threshold intensity to filter out
weaker lines:

df_Ne=pf.calculate_Ne_line_positions(
wavelength=531.885, cut_off_intensity=2000)

This returns a dataframe, with the Raman shift (wavenum-
ber) expected for each Ne line position for the specific wave-
length (see Figure 5):
Two Ne lines are selected (1117 cm−1 and 1447 cm−1

in this example), and the theoretical splitting is calculated
for the closest lines to those specified wavenumbers. Next,
one representative Ne acquisition file is selected, and used
to tweak SciPy find_peaks parameters stored in the class
Neon_id_config to identify the approximate position of each
Ne line (and its intensity) by identifying the largest peak within
± 10 datapoints of the Ne line of interest (e.g. for a spectra
resolution of 0.4 cm−1 and for line 1117, the spectral region
1113–1121 cm−1 would be searched). Obtaining approximate
peak positions and intensities greatly improves the computa-
tional efficiency of the fitting process.

After identifying approximate peak positions for each
file, peak fitting parameters are tweaked in the class
Ne_peak_config. The peak fitting function fits a polynomial
background to two regions either side of the Ne line, dis-
carding points within this region which are outside of a cer-
tain number of standard deviations of the median background
position (default 3σ, can be tweaked in Ne_peak_config).
This background is then subtracted. For most Ne lines, a
single PseudoVoigt/Voigt curve can be fitted to background-
subtracted data (see ∼1447 cm−1 peak, Figure 5). For the
line at ∼1117 cm−1, two peaks need to be fitted iteratively
because of the prominent shoulder to the left of this line
(red and cyan curves, combined into the green curve, Fig-
ure 5). In general, the default peak fitting values stored in
a dataclass Ne_peak_config will only need tweaking once
for each Ne line on each instrument, because repeated Ne
acquisitions are so similar. The most important parame-
ters to change when swapping between lines are the posi-
tions of the background. These are expressed in terms of
distance from the peak center identified above. For exam-
ple, specifying lower_bck_pk1=(-40, -25) positions a back-
ground window 40–25 wavenumbers to the left of the pixel
with maximum intensity. Other important parameters include
the degree of polynomial to fit between background points
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Figure 5: Schematic showing how DiadFit can be used to fit Ne lines, and build a model of correction factor vs. time with full
propagation of uncertainty.

N_poly_pk1_baseline=2, and the approximate sigma of the
PseudoVoigt/Voigt curve (pk1_sigma=0.6, pk2_sigma=0.7).
These tweaked peak fit parameters are then used to fit one
spectra file with the function fit_Ne_lines. This function
returns the peak positions and other fit parameters, as well as
graphs showing the overall best fit, the residual of the fit, and
the background positions.
After inspecting these graphs for one Neon acquisition and
tweaking any fit parameters as necessary (e.g. background
positions, plotting parameters), the tweaked find peaks and
peak fit parameters can then be used to loop through all Ne
spectra. On a US$1000 laptop (e.g. 16 GB RAM, Intel i7), it
takes approximately 0.2 s to fit each Ne file. There is also
an option for the function to save a figure showing the fit
for each file in a subfolder it creates within the spectra path.
This increases the run time by a factor of five for each file,
but allows users to check the fits, or publish fits as part of
a data repository accompanying a paper. After all files are
looped through, DiadFit returns a pandas.DataFrame with
the filename, and all the peak fit parameters (including the all
important Ne correction factor).
In most published studies, Fermi diad acquisitions have
been corrected using the average correction factor of the Ne
line acquired before and after a specific sample (although oc-

casionally concurrent acquisitions are used). However, the
relatively narrow shape of the Ne peaks means that the error
on the peak center of each line, and thus the Ne correction fac-
tor, is relatively large (see error bars on Ne correction factor
on Figure 5). Thus, we suggest it may be better to perform a
regression of the correction factor as a function of time to aver-
age out this random peak fitting noise. On many instruments
(e.g. WITec, some HORIBAs), the spectral file doesn’t include
a useful time stamp (and the file write/edit date may be the
time of export, not acquisition). Sometimes (e.g. WITec), the
timestamp is stored in the metadata file, meaning that data
and metadata files can be stitched together to obtain the time
for each Ne correction factor (see documentation for exam-
ples). In this instance, DiadFit is designed to work best when
spectra and metadata files have the same name—if users wish
to use different names, they will have to adapt the automatic
stitching functions. If a metadata file is not available, DiadFit
contains functions to extract the time based on the read or edit
time stamp on the spectra file. Once a dataframe is obtained
that contains both the Ne correction factor and the time, it is
useful to inspect changes in Neon correction factors and peak
positions with time using built-in visualization functions (e.g.
plot_Ne_corrections). This allows outliers to be discarded
that differ substantially from adjacent acquisitions using the

Presses universitaires de �rasbourg Page 343

https://doi.org/10.30909/vol.07.01.335359


DiadFit Wieser & DeVitre 2024

function filter_Ne_lines_neighbours. Finally, a polyno-
mial or spline model is used to parameterize the change in Ne
correction factor as a function of time (expressed as seconds
after midnight, Figure 5), along with the associated confident
interval. This model is saved, so that it can be loaded when
processing CO2 spectra from the same session to calculate
the correction factor at each point in time (and the associated
uncertainty).
It should be noted that Bakker [2021] criticized the “line seg-
ment” technique, because it assumes that the correction factor
at any given point between two lines is the same, which is not
true if there is any non-linearity in the spectrometer. DiadFit
allows users to fit as many different Ne lines as they wish,
so more complex Ne correction routines could be utilized (we
address differences between drift correction methods in a later
contribution).

7 EQUATION OF STATE CALCULATIONS
An equation of state (EOS) describes the relationship be-
tween physical properties of a system such as pressure, tem-
perature, and density. EOS calculations are widely used in
volcanology—they allow conversion of fluid inclusion densi-
ties into pressures, conversion of homogenization tempera-
tures from microthermometry into CO2 densities, and calcu-
lations of densities inside optical cells widely used to calibrate
Raman spectrometers. At present, DiadFit supports calcula-
tions using pure CO2 and mixed CO2-H2O EOS. In future, we
could implement additional EOS upon request from users (so
check ReadTheDocs).

7.1 Pure CO2 EOS
DiadFit currently supports calculations using the EOS for
pure CO2 using the model of Sterner and Pitzer [1994] (here-
after SP94) or Span and Wagner [1996] (hereafter SW96).
While the SP94 EOS is hard-coded directly into DiadFit, we
perform calculations using the SW96 EOS through the Python
package CoolProp [Bell et al. 2014], which needs to be in-
stalled to use the DiadFit functions relying on this EOS. There
are three core functions used to perform EOS calculations in
DiadFit:
1. calculate_rho_for_P_T: calculates CO2 density for a
known pressure and temperature.

2. calculate_P_for_rho_T: calculates pressure for a
known CO2 density and temperature.

3. calculate_T_for_rho_P: calculates temperature for a
known pressure and CO2 density.

7.1.1 Calculating CO2 density for a given P and T
The function calculate_P_for_rho_T can be used to calcu-
late CO2 density for a specified Pressure (𝑃) and Temperature
(𝑇 ). This calculation is very useful when processing data col-
lected from Raman gas cell calibration apparatus, where 𝑇 is
measured by a thermistor and 𝑃 is measured with a pressure
transducer in the fluid within the optical cell [DeVitre et al.
2021]. An entire spreadsheet of pressures and temperatures
can be imported and all densities calculated:

df=pd.read_excel('Cali_Data.xlsx')
dens_SW96=pf.calculate_rho_for_P_T(
P_kbar=df['P_kbar'], T_K=df['T_K'],
EOS='SW96')

7.1.2 Calculating pressures from CO2 densities and tempera-
tures

The function calculate_P_for_rho_T can be used to calcu-
late pressure for a specified CO2 density (rho) and tempera-
ture (T). This calculation is commonly used to calculate fluid
inclusion pressures. This pressure may represent the entrap-
ment pressure under the assumption that the volume andmass
of the inclusion is fixed from the [Roedder 2018], or a re-
equilibration pressure if the inclusion underwent prolonged
stalling [Hansteen 1991].
To convert a CO2 density of 0.5 g cm−3 into a pressure at a
temperature of 1200 K using the Span and Wagner [1996] EOS
(SW96):

P_SW96=pf.calculate_P_for_rho_T(
CO2_dens_gcm3=0.5, T_K=1200, EOS='SW96')

The Sterner and Pitzer [1994] EOS (SP94) can be used instead
simply by changing the EOS argument:
P_SP94=pf.calculate_P_for_rho_T(
density_gcm3=0.5, T_K=1200, EOS='SP94')

In addition to single calculations, this function can also be
applied to a pandas.DataFrame with as many rows as the
user wants. For example, to load an entire spreadsheet with
columns for CO2 densities and an estimate of entrapment tem-
peratures in °C (as well as an optional column with the sample
name):

df=pd.read_excel('FI_densities.xlsx')
P_SW96=pf.calculate_P_for_rho_T(
T_K=df['Temp in C']+273.15,
CO2_dens_gcm3=df['Density_g_cm3'],
EOS='SW96', Sample_ID=df['Sample'])

This returns a pandas.DataFrame with calculations done for
each input row.

7.1.3 Comparing two EOS
DiadFit makes it very simple to compare calculations using
the EOS of Sterner and Pitzer [1994] and Span and Wagner
[1996]. In Figure 6, we calculate pressure for 11 discrete densi-
ties between 0.1 and 1.1 g cm−3 and temperatures between 34
and 2000 °C (see ReadTheDocs for a worked example). These
calculations would have been tedious in existing tools, but can
be performed in several lines of code in DiadFit (and in sec-
onds of computational time). Figure 6 demonstrates that the
EOS are extremely similar at temperatures relevant to basaltic
magmas (<2 % discrepancies).

7.1.4 Converting homogenization temperatures to CO2 densi-
ties

Microthermometry provides an alternative method to Raman
spectroscopy to determine the density of CO2-rich fluids. A
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Figure 6: Comparison of the CO2 EOS of Sterner and Pitzer [1994] and Span and Wagner [1996]. The y axis on [B] shows the
pressure calculated by SP94 minus that from SW96 divided by the average of these two pressures.

fluid inclusion is cooled down, and then slowly heated up
to determine the temperature at which a two-phase inclusion
containing liquid and vapour transitions to a single homoge-
nous phase (the homogenization temperature). CO2 densities
can be calculated from these homogenization temperatures
using the function calculate_CO2_density_homog_T, which
uses the homogenization temperature to calculate the pressure
based on the position of the L-V phase boundary from Span
and Wagner [1996]. Knowing the temperature and pressure
of this transition, the CO2 density can be calculated using the
Span and Wagner [1996] EOS [e.g. Hansteen 1991; Kobayashi
et al. 2012]. To calculate the CO2 density of a fluid inclusion
which homogenized at –18 °C to a liquid phase:

CalcDens=pf.calculate_CO2_density_homog_T(
T_h_C=-18, homog_to='L')

This returns a dataframe showing the bulk density, the den-
sity of the co-existing liquid and vapour just before homoge-
nization, and the user-inputted parameters.
An entire excel sheet of homogenization temperatures and
phases can be loaded as a dataframe. There is also an op-
tional input of entering a sample name for each row (so it
is returned in the outputted dataframe). Uncertainties in ho-
mogenization temperature can be propagated to determine er-
rors in density using Monte Carlo techniques (see example on
ReadTheDocs).

7.2 CO2-H2O EOS
In reality, many igneous systems will have some proportion
of H2O in the exsolved fluid phase, and thus the entrapped
fluid inclusion. In this scenario, entering CO2 densities mea-
sured by Raman spectroscopy or microthermometry into a
pure CO2 equation of state to calculate pressure is problem-

atic, and a mixed CO2-H2O EOS must be used instead. How-
ever, detecting the presence of H2O in fluid inclusions, let
alone quantifying H2O mole proportions required to perform
calculations using a H2O-CO2 EOS, is very challenging for
a number of reasons [Morgan et al. 1993]. First, H2O may
no longer be present in the inclusion, because of diffusive loss
during stalling, ascent and syn-eruptive quenching, or because
it reacted with the mineral host to form hydrous phases [Mor-
gan et al. 1993; Mavrogenes and Bodnar 1994; Zanon et al.
2024]. If H2O is still present, H2O has a very low solubility
in CO2 fluids at temperatures typical of routine Raman anal-
yses (∼0.5 mol%, [Spycher et al. 2003; Frezzotti and Peccerillo
2007]). The small proportion of molecules that do dissolve will
be characterized by a weak and relatively narrow (15 cm−1)
peak at ∼3640 cm−1 that may not be detectable [Wopenka
and Pasteris 1987; Frezzotti and Peccerillo 2007; Berkesi et
al. 2009]). The remaining H2O that cannot dissolve will be
present as a very thin film on the outside of the inclusion; in
inclusions 3–5 µm in size, ∼20 mol% H2O can be hosted in
a water film only 0.2 µm thick [Frezzotti and Peccerillo 2007].
The extremely thin nature of this film makes is very challeng-
ing to detect optically or with Raman spectroscopy. Another
issue is that at room temperature, peaks resulting from H2O
(dissolved or in films) are at ∼3000–3800 cm−1 [Frezzotti et
al. 2012], which is not in the typical spectral window used
when measuring CO2 at high spectral resolution, requiring a
separate acquisition to detect them. Heating the fluid inclu-
sion to ∼120–150 °C, where the solubility of dissolved H2O is
far higher, results in a larger peak, which can be more easily
identified/quantified [Berkesi et al. 2009]. However, perhaps
because the H2O has been lost in many cases, and even with
heating, quantification is challenging, the majority of fluid in-
clusion studies simply pick a fixed value of 𝑋H2O (e.g. 0.1 for
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Forte et al. [2023], Sandoval-Velasquez et al. [2023], and Zanon
et al. [2024]). More recently, DeVitre and Wieser 2024 deter-
mine 𝑋H2O as a function of pressure for the volcanic system
of interest using melt inclusion measurements (many solubil-
ity models used to calculate saturation pressures also calcu-
late 𝑋H2O at the point of vapour saturation [e.g. Ghiorso and
Gualda 2015])
To calculate pressures for mixed fluids, an assumption also
must be made about whether H2O was lost or remained
in the fluid inclusion at the time of measurement. By de-
fault, DiadFit calculates the pressure for both scenarios. For
the calculation assuming H2O was lost prior to measure-
ment, DiadFit follows the correction method of [Hansteen
and Klügel 2008], where the measured CO2 density is cor-
rected back to a bulk density of the trapped CO2-H2O mix
(where 44 is the molar mass of CO2, 18 of H2O; Figure 7D):

α = 𝑋H2O/(1 − 𝑋H2O) (8)

ρbulk = ρCO2 ,meas

(
1 + α

18
44

)
. (9)

If H2O is assumed to still be present in the fluid inclusion
as a thin film of liquid around the edge, the bulk density at
the time of trapping can be calculated as follows (assuming
no volume changes; Figure 7E). Following the law of partial
pressures:

𝑃Tot = 𝑃CO2 + 𝑃H2O (10)

𝑃CO2 = 𝑃Tot𝑋
mol
CO2 (11)

𝑃H2O = 𝑃Tot𝑋
mol
H2O, (12)

the pure CO2 EOS is used to calculate the pressure of the CO2
fluid (𝑃CO2 ) from the measured density and analysis temper-
ature (Figure 7E). Re-arranging Equation 11 allows calculation
of 𝑃Tot. Then Equation 12 is used to calculate 𝑃H2O for a
fixed value of X𝑚𝑜𝑙

H2O
. Unlike the scenario where H2O is lost,

this calculation requires knowledge of the analysis tempera-
ture, which is used alongside 𝑃H2O to calculate ρH2O using
the pure H2O EOS of Wagner and Pruß [2002] (implemented
in [Bell et al. 2014]). By converting 𝑋molH2O to X

mass
H2O
, the volume

of CO2 and H2O phases can be calculated from their densi-
ties. By re-arranging, ρbulk can be calculated, which can then
be entered in a CO2-H2O EOS (Figure 7E).DiadFit performs calculations using the CO2-H2O of
[Duan and Zhang 2006]. This EOS was implemented in
DiadFit by translating and adapting the C code of Yoshimura
[2023]. In DiadFit, pressure or molar volume are solved it-
eratively from Equation 9 of Duan and Zhang [2006] using a
Newton-Raphson method. At certain bulk densities and 𝑋H2O
values, a negative pressure is converged upon during iteration.
To resolve this issue, and other convergence issues, we gen-
erate a lookup table of molar volumes for 40 temperatures
(𝑇 = 300–2000 K), 40 𝑋H2O values (0–1), and 40 pressures
(P = 1–100 kbar), yielding 62,000 lookup values for all possi-
bly combinations of these (40 × 40 × 40). When a user enters
a bulk density, this is first converted to molar volume, and
then the closest match to the entered conditions in the look
up table is identified, and the corresponding pressure is used

as the start point for the algorithm. This resolves convergence
issues, and speeds up computation time.
Overall, to convert fluid inclusion CO2 densities into pres-
sures using the CO2-H2O EOS, users should use the functioncalculate_entrapment_P_XH2O, specifying measured CO2
densities, entrapment temperature, analysis temperature, and
XmolH2O. The function returns the pressure for the mixed EOS
for the H2O loss and no H2O loss scenario, and the calculated
bulk densities. It also returns pressures for the pure CO2 EOS
of SW96, SP94 and Duan and Zhang [2006] for comparison.
Unlike existing tools, this allows pressures to be calculated
for hundreds of fluid inclusions very quickly, using different
𝑋H2O for each inclusion if so desired. This function can also
be used to visualize the magnitude of the correction factor for
different CO2 densities and molar proportions of H2O in the
fluid (e.g. Figure 8).
We also include the function

calc_prop_knownP_EOS_DZ2006 for calculating molar
volumes, compressability factors, fugacity and activities of
each species using the Duan and Zhang [2006] EOS where
pressure, temperature and 𝑋H2O are known. We anticipate
this will be useful for experimentalists and/or those building
solubility models or other parameterizations requiring this
thermodynamic data.

8 ADDITIONAL CALCULATIONS RELATING TO FI BAROM-
ETRY

8.1 Converting Pressures into depths

Building on functionality in Thermobar [Wieser et al.
2022], DiadFit can convert pressures to depths using
various options (Figure 1H) implemented in the function
convert_pressure_to_depth:
• A fixed crustal density (e.g. ρ = 2700 kg m−3)
• A 2-step or 3-step crustal density profile (e.g.

ρ = 2700 kg m−3 at <10 km, ρ = 3300 kg m−3 at >10 km)
• Pressure-depth models of:

1. A crustal profile for arc magmas from Rasmussen et al.
[2022] ('rasmussen').
2. The combined model of Mavko and Thompson [1983]
and DeBari and Greene [2011] as parameterized by Putirka
[2017] ('mavko_debari') for use in continental arcs.
3. A crustal profile for Hawaii from Hill and Zuccal [1987]
as parameterized by Putirka [2017] ('hill_zucca')
4. A crustal profile for Hawaii from Ryan [1988] parameter-
ized by Lerner et al. [2021] ('ryan_lerner').
We will add more density profiles as they are published, so we
encourage users to check the documentation for more details.

8.2 Modeling fluid inclusion re-equilibration

DeVitre and Wieser [2024] implement a Python3 version of
the mechanical re-equilibration model for olivine-hosted fluid
inclusions of Wanamaker and Evans [1989] in their package
RelaxiFI. We incorporate this methodology into DiadFit for

Presses universitaires de �rasbourg Page 346



VOLC

V

NIC

V

7(1): 335–359. https://doi.org/10.30909/vol.07.01.335359

[D] All H2O-lost (Hansteen & Klugel, 2008)

[C] Assume pure CO2 fluid

[E] No H2O-lost

[A] FI trapped at magmatic T
(1200 °C)

[B] Raman measurements
@ 37°C

XH2O, mol = 0.1

ρCO2 (measured) = 0.4 g/cm3

ρCO2 (measured) = 0.4 g/cm3

PCO2 = 8.26 MPa

ρH2O= 0.9937 g/cm3

PTot XCO2, mol = PCO2

PH2O = PTot XH2O, mol = 0.918 MPa

VCO2 = VH2O =

VH2O +VCO2

ρCO2 ρH2O

ρH2O = ?

ρCO2 (meas) = 0.4 g/cm3

ρbulk=?

= 0.4107 g/cm3

ρbulk = =

ρbulk =ρCO2 (measured) X (1+ α * (18/44))

α =XH2O, mol /(1- XH2O, mol) = H2O/CO2 molar ratio = 0.11

ρbulk =0.418

Pentrap =178.5 MPa

Pentrap =155.38 MPa (Duan +Zhang 2006)
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H2O (lost)+

Assuming constant FI volume

Law of partial pressures:

Using a pure CO2 EOS at 37°C:

Using a pure H2O EOS at 37°C:

Given mass (mT) /Volume (V)=density (ρ)
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XH2O, mass =(18*XH2O, mol )/(18*XH2O, mol+ 44*XCO2, mol) =0.0435

mT(XH2O, mass)

mT
ρCO2ρH2O

ρH2O (1-XH2O, mass) + XH2O, massρCO2

Figure 7: Schematic diagram showing corrections for H2O for a
fluid inclusion with a CO2 density of 0.4 g cm−3, and Xmol

H2O
=0.1.

ease of installation and maintenance, because it uses the un-
derlying EOS and density-depth conversions from DiadFit
to track changes in fluid inclusion volume, density, and
pressure for different stalling, ascent, and quenching paths.
Worked examples are available on ReadTheDocs. If this
model is used, it should be described as follows “fluid inclu-
sion re-equilibration was assessed using RelaxiFI [DeVitre
and Wieser 2024], a Python3 adaptation of the mechanical
re-equilibration model of Wanamaker and Evans [1989] im-
plemented through DiadFit v.x.x.x”.
For example, Figure 9 shows an example tracking the
change in fluid inclusion radius, CO2 density and internal
pressure of a FI during isothermal ascent (1200 ° C) towards
the surface. Specifically, this model considers FI with an ini-
tial radius of 1 µm (𝑅) located 100 µm away from a crystal
defect (𝑏) ascending from 10 km to the surface in 20 steps
(depth_path_ini_fin_step with an ascent rate of 1 m s−1
(ascent_rate_ms), which is 0.03 MPa s−1. Relationships
between pressure and density are tracked using the Span
and Wagner [1996] EOS (SW96). The function returns a
dataframe with columns for time, external pressure change,
internal pressure change, stretching rate, FI radius, fractional
change in radius, CO2 density and depth. Depth can be cal-
culated using the different models available in DiadFit and
is an optional argument in the function above. As well as a
dataframe, the function also returns a figure (Figure 9).
9 QUANTIFYING UNCERTAINTY
DiadFit also allows rigorous propagation of uncertainty
through various volcanological workflows.

9.1 Uncertainty when determining CO2 density
DiadFit provides a framework for propagating the three main
sources of analytical uncertainty when quantifying CO2 den-
sity by Raman spectroscopy:

Figure 8: Difference between the mixed CO2-H2O EOS and the
pure CO2 EOS of Duan and Zhang [2006] for fluid inclusions
with different measured CO2 densities (under the assumption
of H2O loss).
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Figure 9: Screenshot of the output from pf.stretch_in_ascent for isothermal ascent (1200 ° C) towards the surface for a FI
with an initial radius of 1 μm for an ascent rate of 1 m s–1. The returned figure shows the fractional change in the fluid inclusion
radius as a function of depth (e.g. it gets bigger as it ascents), and the accompanying drop in CO2 density caused by the larger
FI volume. The returned pandas.DataFrame shows changes in internal and external pressure, fluid inclusion radius, along with
other parameters.

1. Peak fitting error when determining the center of each
diad peak (Figure 10A–B).
2. Error associated with correcting for instrument drift (Fig-
ure 10A–C).
3. Error associated with the densimeter used to convert
drift-corrected splitting into CO2 density (Figure 10D).

DiadFit obtains the 1σ error associated with each peak center
from lmfit (which uses the covariance matrix). As each peak
is fitted independently because the Diad1 and Diad2 peaks
do not overlap, the error associated with the position of each
peak center is combined in quadrature to get the error on the
peak splitting. The Ne line correction factor vs time regres-
sion model (Figure 5) is used to determine the error on the
Ne correction factor for each acquisition (Figure 10C). This
error is combined with the splitting error in quadrature to get
the uncertainty in the corrected splitting (black crosses, Fig-
ure 10A). To propagate the uncertainty associated with the
densimeter, DiadFit uses the regression model through the
calibration data. This error is combined with the error on
the corrected splitting to yield the overall error in density
(σ Density g/cm3, Figure 10D). Assessing the relative con-
tribution from each source of uncertainty helps optimization
of analytical routines (Figure 10). If the majority of the error is
being introduced at the peak fitting stage, it may be that longer
acquisitions are required to get stronger signals, or a higher
resolution grating is required. Figure 10A, F shows that a few
acquisitions at ∼0.18–0.2 g m−3 have far larger peak fitting er-

rors than other acquisitions from the same analytical session.
These anomalously large errors would justify inspection of the
spectra and fits in more detail, and perhaps re-analysis.

9.2 Uncertainty in fluid inclusion pressures

DiadFit can be used to propagate uncertainty when calcu-
lating pressures and depths from fluid inclusions based on
Raman and microthermometry measurements. The func-
tion propagate_FI_uncertainty allows propagation of un-
certainties in input parameters using Monte Carlo methods.
The function input arguments are the magnitude and distri-
bution of uncertainty for CO2 density, temperature, the mol
fraction of H2O (𝑋H2O), and the crustal density. Input errors
for each variable can be absolute (e.g. ±50 K for temperature)
or percentage errors (e.g. ±5 %), and can follow a normal
or uniform distribution. For example, a user may specify that
the uncertainty in their temperature is best approximated with
a normal distribution with a standard deviation of 50 K. For
each fluid inclusion, the function generates 𝑁 duplicates of
each input parameter randomly drawn from these specified
prior distributions. It is assumed that all input parameters are
independent of each other. Pressure and depths are calcu-
lated for each of these 𝑁 duplicates. The function outputs a
figure showing the simulation for a single specified fluid in-
clusion (here, FI1, Figure 11), in addition to two dataframes.
The first dataframe shows the mean, median, standard de-
viation of calculated pressures and depths for each fluid in-
clusion (Figure 11, Output1). For skewed distributions, the
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A

C                 D

E F

B

Corrected splitting
Diad1 fit
Diad2 fit
Ne corr model

Total error
Corrected splitting
Densimeter

Figure 10: Assessing different sources of analytical error. [A] The black cross shows the total error on the corrected splitting from
propagating the error in fitting CO2 peaks and Ne correction model for an instrument with a spectral resolution of 0.56 cm−1.
Individual contributions from each peak and the Ne correction model are shown. Note, the total error is smaller than the sum
of each error shown, as a result of propagating these errors in quadrature. [B] To allow easier comparison of the proportional
contribution from each source of error, we also take each individual error and divide by the total error on the corrected splitting.
This show that the fitting error on Diad1 is the largest source of uncertainty. [C] Ne regressionmodel with uncertainty represented
by red-dashed lines, along with the uncertainty for a single diad acquisition. [D] Error associated with the densimeter shown with
dashed lines, with the underlying acquisitions shown as dots. The densimeter is regressed in three parts for low, medium, and
high densities (see [DeVitre et al. 2021]). [E] Percentage % error on calculated density, showing the contribution from errors on
the corrected splitting (see [A]) and from the densimeter. [F] 1 σ errors on density and corrected splitting.
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standard deviation may be best approximated by half the dif-
ference between the 84th − 16th percentile (also provided).
The second dataframe showing the results for all simula-
tions: if 𝑁 = 1000 duplicates and 𝑁 = 10 fluid inclusions,
the dataframe has 10,000 rows (Figure 11, Output2). Monte
Carlo simulations using the Duan and Zhang [2006] EOS are
computationally expensive. To optimize efficiency for the
propogate_FI_uncertainty function, calculations using this
equation of state utilize the python multiprocessing package
[McKerns et al. 2011]. This speeds up calculations ~4× for a
32GB laptop with 8 processors. This option can be turned off
and on for all calculations using if 'multiprocess=True' or
'False'.
9.3 Uncertainty in equivalent CO2 contents of vapour bubbles

The Raman method of reconstructing vapour bubbles present
within melt inclusions relies on measuring the CO2 density,
and then converting this into an equivalent amount of CO2
that would have been dissolved in the glass at the time of
melt inclusion entrapment by mass balance:

COequivalent glass ppm2 = 104
𝑉𝐵vol % · ρCO2

ρmelt
(13)

where ρCO2 is the density of CO2, ρmelt is the density of sili-
cate melt, and 𝑉𝐵vol % is the volume % of the inclusion occu-
pied by the vapour bubble.
Similar to the fluid inclusion method described above,

DiadFit contains functionality to propagate the uncertainties
in each of these variables using Monte Carlo methods. The
function propagate_CO2_in_bubble allows users to specify
the magnitude of the error for each parameter, whether the
error is a % error or an absolute error, and whether the error
is normally or uniformly distributed. This function returns
two dataframes—the first with the average and standard de-
viation for each melt inclusion, and the second showing all
simulation outputs. The uncertainty in CO2 density can be
obtained from DiadFit. The uncertainty in melt density can
be obtained from Iacovino and Till [2019]. Uncertainty in es-
timating bubble volumes depend greatly on the method used
and the geometry of inclusions [e.g. Tucker et al. 2019; De-
Vitre et al. 2023b].

10 OTHER USEFUL FUNCTIONS FOR VOLCANOLOGICAL
WORKflOWS

10.1 Quantifying peak asymmetry/skewness to identify co-
existing liquid and gaseous CO2

At room temperature (18–22 °C), a CO2 fluid with a density
between ∼0.18–0.21 and 0.75–0.79 g cm−3 will consist of an
inner shell of CO2 vapour, and an outer shell of CO2 liquid
[Span and Wagner 1996]. Using the calculate_CO2_homog_T
function, we can calculate that at 20 °C the gaseous phase
will have a density of 0.194 g cm−3 and the liquid will have
a density of 0.773 g cm−3. DeVitre et al. [2023a] show that
Raman measurements performed in inclusions with two co-
existing phases at room temperature do not always show two
distinct peaks for the gaseous and liquid CO2 phase, but of-
ten show a single skewed peak, with contributions from both

phases. Quantifying peak asymmetry can help to identify such
spectra, which cannot be reliably quantified for CO2 density.
To assess asymmetry in each spectra, an 𝑁 th degree poly-
nomial is fitted between specified baseline positions, and this
background is subtracted. A cubic-spline is fitted between the
baseline positions. The x and y coordinates of the highest
point on this spline fit are identified. The position on each
shoulder of the peak with an intensity equal to a certain frac-
tion of the peak height is identified. In Figure 12, this cut-
off parameter int_cut_off is set at 0.3. The ratio of the x-
distance between the peak center and these shoulder points
(green and grey lines in Figure 12) defines the peak asym-
metry. After tweaking these parameters for one spectra, the
function loop_diad_skewness can be used to loop through all
files in a specific folder, and stitch the results into a dataframe.
Typical skewness parameters have to be identified for each in-
strument, after which spectra with high skewness can be iden-
tified, and reanalysed about the critical temperature where a
single peak will be present [see DeVitre et al. 2023a].

10.2 H2O fitting

It is well established that Raman spectroscopy can be used
to quantify H2O within silicate glasses. The glass alumino-
silicate region consists of multiple bands; a low frequency/low
wavenumber (LF or LW) band centered on ∼550 cm−1, a
medium frequency/wavenumber (MF, MW) band centered at
∼550 cm−1, and a high frequency/wavenumber (HF, HW)
band at ∼1000 cm−1 (Figure 13, see [van Gerve and Namur
2023] for detailed description of the relevant vibrations). The
H2O region is characterized by a broad, asymmetrical peak
centered at ∼3600 cm−1. There are a number of different
methods to use these different peaks to quantify H2O; some
use the height or intensity of the water Raman band (∼3000-
3800 cm−1), and others using the ratio of the area under the
water region divided by the area under the alumino-silicate
band at ∼200–1250 cm−1 [Thomas 2000; Zajacz et al. 2005;
Behrens et al. 2006; Thomas et al. 2006; Mercier et al. 2010;
Le Losq et al. 2012; Di Genova et al. 2017; Schiavi et al. 2018].
The exact relationship between peak areas/ratios/heights and
the H2O content depends on instrument hardware and the
glass major element composition, so standards with known
H2O contents should be used for calibration (see Schiavi et al.
[2018] and references within).
In terms of quantification strategies, Behrens et al. [2006]
provide two empirical equations relating silicate:water areas
to absolute water contents. One equation is for albite, haplo-
granite, and dacite samples, and the other is for intermediate
and depolymerized compositions. Le Losq et al. [2012] build
on this to produce a global empirical calibration. Importantly,
they note that different silicate glass compositions require dif-
ferent background positions prior to quantifying silicate peak
areas. Schiavi et al. [2018] refine this method further, noting
that as well as being sensitive to glass composition, the base-
line is also sensitive to redox state. They suggest fitting a
default cubic baseline through predefined baseline positions
for four melt compositions (basalt, basanite, andesite, rhyo-
lite) results in the area ratio (LW+HW±MW to H2O area)
being reasonably independent of melt composition. However,
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Outputs
df1: a dataframe with the average for each FI

Propagating uncertainty: CO2 density to pressure and depth
Load in CO2 densities (±Temp
± XH2O + things to plot later)

For T and CO2, (±XH2O and crustal density):

Summary figure for a selected FI

• Magnitude of error, and whether absolute
or % (e.g. 5 K, 5%)
• Whether error is normally or uniformly
distributed

propagate_FI_uncertainty()

df2: A dataframe showing the results for all simulations for each FI

Figure 11: Schematic showing the workflow used to propagate uncertainty in CO2 density, Temperature, XH2O, and crustal density
into error distributions in pressure and depth for each fluid inclusion.
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Figure 12: Schematic showing how DiadFit can be used to
assess diad assymetry/skewness following the method of De-
Vitre et al. [2023a].

González-García et al. [2021] note that the presence of nano-
lites with a peak at 670–690 cm−1 complicate total silicate
area methods, because this nanolite region overlaps with the
LW silicate region used in the “total area method” of Schiavi
et al. [2018]. They propose a new protocol using only the HW
area to characterize the silicate portion, rather than the overall
silicate region as in Schiavi et al. [2020].
To allow maximum flexibility when using these dif-
ferent methods, DiadFit quantifies three different silicate
band areas, and the overall silicate and water area (Fig-
ure 13), with lots of options for users to tweak back-
ground positions, under the assumption protocols will con-
tinue to change. When fitting spectra acquired on hy-
drous glasses in DiadFit, the first step is to select the
files of interest. As for diad peaks and Ne lines, default
peak fit parameters are stored in dataclasses. There are
dataclasses for the four suggested background positions of
Schiavi et al. [2018], e.g. sil_bck_pos_Schiavi_basalt,
sil_bck_pos_Schiavi_andesite. Users can tweak these
background positions for their specific samples if they wish
(e.g. for a basaltic andesite). For example, the lower back-
ground position can be easily changed for basalt from the de-
fault of 300–340 to 320–350 cm−1:

pf.sil_bck_pos_Schiavi_basalt(
lower_range_sil=[320, 350])

These dataclasses also store options for baseline fitting. Af-
ter removing baseline points outside of a specified sigma -
either a polynomial of degree 𝑁 or a cubic spline can be fit to
all the datapoints within the baseline region. After subtract-
ing away this polynomial, the area under the background-
corrected spectra is calculated using the Simpson and the
trapezoid method [Tallarida and Murray 1987] implemented
in SciPy and NumPy respectively. Overall, the function func-
tion returns these areas, along with the ratio of the silicate to
water areas for each area method (as well as other useful pa-
rameters such as the positions of choosen baselines, degrees
of polynomials etc. for future reference).

10.2.1 H2O fitting within unexposed melt inclusions
A common criticism of the Raman method when quantify-
ing the CO2 content of vapour bubbles is that it does not ac-
count for the sequestration of carbon as solid carbonate phases
on the inclusion walls [e.g. Moore et al. 2015]. DeVitre et
al. [2023b] developed a technique where melt inclusions with
carbonate-bearing vapour bubbles are heated to their liquidus
temperature using a Linkam TS1400XY stage, causing car-
bonate to redissolve as CO2 which can then be measured by
Raman spectroscopy. A concern with any heating method
when working with melt inclusions is the possibility of diffu-
sive loss of H2O [Chen et al. 2011; Gaetani et al. 2012]. DeVitre
et al. [2023b] develop a method to assess H2O loss by acquir-
ing Raman spectra on unexposed melt inclusion glasses before
and after homogenization.
Quantifying H2O in spectra acquired from unexposed melt
inclusions is more complicated than in exposed glasses, be-
cause the Raman signal contains a contribution from the glass
and the overlying olivine host. The contribution from the host
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Figure 13: Schematic showing how DiadFit can be used quantify the relative areas of silicate and H2O peaks in Raman spectra
collected from silicate glasses.
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Figure 14: Schematic showing how DiadFit can be used to unmix the contribution of olivine and glass from spectra taken on
unexposed melt inclusions. The code could be easily adapted for other silicate phases. There is an option to loop if glass
compositions are sufficiently similar. Alternatively, each file can be stepped through manually to tweak positions, and the code
saves the output for each file to a .csv, and these are then stitched together after all files are fitted.
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mineral must be subtracted to obtain an “unmixed spectra”,
allowing reliable estimation of the silicate area. Fortunately,
most magmatic olivine crystals have very low H2O contents;
typically a few 10s of ppm, [Newcombe et al. 2020; Tow-
bin et al. 2023], and occasionally up to 100s of ppm [Wang
et al. 2022]. Thus, peaks in the H2O region of the spectra are
extremely weak/completely absent, even at laser powers far
higher than is typical for glass analyses (∼70–140 mW, [Mar-
tinek and Bolfan-Casanova 2021]), which simplifies demixing
of the signals. Here, we describe the demixing method used
for olivine-hosted melt inclusions, although it could be adapted
for other phases which do not produce significant peaks in
the H2O region. We note that demixing and deconvolution
of glass from other signals is also available in the program
SilicH2O [van Gerve and Namur 2023].
To reliably unmix the spectra, it is best to acquire a spec-
tra in the melt inclusion at the depth where the H2O peak
is the strongest, and a spectra of the olivine next to the melt
inclusion. DiadFit extracts the region of these two spectra
between 800–900 cm−1 containing the strong olivine doublet.
A cubic spline is fitted to both spectra to smooth out noise.
SciPy is used to find the positions of the two strong peaks
in the olivine spectra, and the trough position between these
peaks. DiadFit then creates 𝑁 spectra, where the olivine
spectra is subtracted from the mixed spectra. For each of
these mixed spectra, a linear regression is fit between the two
points with the wavenumbers of the identified olivine peaks.
The vertical (y) distance is then calculated between this lin-
ear regression and the y value at the x-cordinate of the trough
(Figure 14). When too little signal from the olivine has been
subtracted from the mixed spectra, the trough position will be
lower than the linear regression (e.g. Dist = −400 in sketch
1 on Figure 14, and when too much olivine has been sub-
tracted, the peaks will invert, and the distance will be a pos-
itive number. When exactly the right amount of olivine has
been subtracted, there will be no clear peaks or troughs, so
the distance will be zero. The function fits a curve to this
calculated distance vs. the mixing proportion, to determine
the best-fit mixing proportion where the distance is zero. The
resulting, “unmixed” spectra is taken as the spectra from the
melt inclusion itself. Then, the workflow discussed above can
be applied to quantify the relative silicate and H2O area.

11 FUTURE WORK
The open-source nature of DiadFitmeans that users can cus-
tomize functions and build their own (either on a local fork, or
using a pull request on GitHub). Additionally, we anticipate
that we will continue to add workflows as new applications
of Raman spectroscopy appear in volcanology. To reflect the
evolving nature of this tool, when citing DiadFit, users should
make sure they specify the version they used, obtained using:

pf.__version__

Care should also be taken to cite the root packages used by
DiadFit. e.g. if converting CO2 densities to pressures using
the functions here, we recommend wording similar to this:

"CO2 densities were converted into pressures using DiadFit
(Wieser and DeVitre, 2024, v.x.x.x), using the Equation of State
of Span and Wagner [1996] implemented in CoolProp [Bell et
al. 2014].

12 CONCLUSIONS
DiadFit is a high-level Python package that provides easy-to-
use functions for common workflows involving Raman spec-
troscopy and microthermometry (e.g. peak fitting, EOS cal-
culations etc.), with particular applicability to the analysis of
melt inclusions and fluid inclusions. DiadFit not only greatly
reduces the time spent on data processing/reduction, it also in-
cludes numerous functions to propagate uncertainty. In turn,
this will be vital to identify the biggest sources of uncertainty,
and identify ways to minimise these errors in many difficult
volcanological applications.
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