
Ed
it o

r:
C.

M
on

ta
gn

a
|T

yp
es

et
te
r:

J.
Fa

rq
uh

ar
so

n
Su

bm
itt

ed
:2

02
4-
04

-2
2
|A

cc
ep

te
d:

20
24

-11
-0
6
|P

ub
lis

he
d:

20
25

-2
-2
1

Graph Neural Network based elastic deformation emulators for
magmatic reservoirs of complex geometries

Taiyi A. Wang∗† , Ian W. McBrearty, and Paul Segall
Department of Geophysics, Stanford University, Stanford, California, USA.

ABSTRACT
Measurements of volcano deformation are increasingly routine, but constraining complex magma reservoir geometries via in-
versions of surface deformation measurements remains challenging. This is partly due to deformation modeling being limited
to one of two approaches: computationally efficient semi-analytical elastic solutions for simple magma reservoir geometries
(point sources, spheroids, and cracks) and computationally expensive numerical solutions for complex 3D geometries. Here, we
introduce a pair of Graph Neural Network (GNN) based elasto-static emulators capable of making fast and reasonably accurate
predictions (error upper bound: 15 %) of surface deformation associated with 3D reservoir geometries: a spheroid emulator and
a general shape emulator, the latter parameterized with spherical harmonics. The emulators are trained on, and benchmarked
against, boundary element (BEM) simulations, providing up to three orders of magnitude speed up compared to BEM methods.
Once trained, the emulators can generalize to new reservoir geometries statistically similar to those in the training data set,
thus avoiding the need for re-training, a common limitation for existing neural network emulators. We demonstrate the utility of
the emulators via Bayesian Markov Chain Monte Carlo inversions of synthetic surface deformation data, showcasing scenarios
in which the emulators can, and can not, resolve complex magma reservoir geometries from surface deformation. Our work
demonstrates that GNN based emulators have the potential to significantly reduce the computational cost of inverse analyses
related to volcano deformation, thereby bringing new insights into the complex geometries of magmatic systems.

KEYWORDS: Volcano deformation; Magma reservoir geometry; Machine learning emulators; Graph Neural Network.

1 INTRODUCTION
A fundamental goal of volcano geodesy is to constrain the ge-
ometry and volume changes of magma reservoirs [Dvorak and
Dzurisin 1997]. Understanding the geometric complexity of
magmatic reservoirs is important, because reservoir geometry
exerts first-order control on the formation of magmatic path-
ways [Gudmundsson 2006; Karlstrom et al. 2009], influences
the development of ring faults during catastrophic caldera col-
lapses [Kennedy et al. 2004; Holohan et al. 2008], and mod-
ulates the interaction between magmatic input and existing
crystal mush [Humphreys et al. 2008; Wright et al. 2012; Cash-
man and Giordano 2014]. For hazard forecasting, accurate esti-
mates of magmatic volume changes from surface deformation
are contingent on accurate modeling of reservoir geometries
[Pritchard and Simons 2004].
The inverse problem of constraining reservoir geometries
through surface deformation relies on forward mechanical
models linking reservoir dynamics with surface deforma-
tion. Magma reservoirs are comprised of melt, crystals, and
volatiles, with dynamics governed by multi-phase flow. The
crust surrounding magma reservoirs is rheologically complex,
with deformation governed by visco- [Dragoni and Magna-
nensi 1989; Segall 2016] and poro- [Gudmundsson 2016; Liao
et al. 2018] elasticity. Constraining all parameters relevant
to the aforementioned fluid dynamics and rheologies is chal-
lenging. For deformation spanning periods shorter than the
viscoelastic relaxation timescales (weeks) and poroelastic dif-
fusion timescales (days), but longer than the timescales of
∗Q taiyi@caltech.edu
†Now at Seismological Laboratory, California Institute of Technology,
Pasadena, California, USA.

seismic wave propagation (seconds), the crust surrounding
magma reservoirs can be treated as elasto-static, and the rel-
evant reservoir dynamics reduces to a spatially uniform pres-
sure change, often due to magma recharge or second boil-
ing [Tait et al. 1989] (i.e. increase in exsolved volatiles due to
magma crystallization induced volatile saturation).

Existing elasto-static models, however, are ill-suited for
non-linear inverse problems aiming to resolve reservoir ge-
ometries, and fall into two general categories: 1) semi-
analytical models with point spherical [Mogi 1958; McTigue
and Segall 1988], spheroidal [Yang et al. 1988; Cervelli 2013],
and crack-shaped reservoir geometries [Fialko et al. 2001], and
2) numerical models with capability for arbitrarily complex
reservoir geometries [Cayol and Cornet 1997; Masterlark 2007;
Coco et al. 2014]. Unfortunately, neither is ideal for inverse
problems, because semi-analytical models are constrained, a
priori, to simple reservoir geometries, while numerical mod-
els are computationally prohibitive for non-linear inversions
that require many forward calculations. The high computa-
tional cost of numerical models is exacerbated by the need
to probabilistically constrain reservoir geometries and loca-
tions, accounting for data uncertainties [Anderson and Segall
2013]. Point dilation sources have been proposed as an al-
ternative, where complex reservoir geometries can be easily
parameterized in inverse problems [Zhai and Shirzaei 2017],
but such models do not conform with the uniform pressure
conditions expected within reservoirs, rendering interpreta-
tions in terms of physical quantities difficult. Most recently,
Gaussian-process-based emulators [Anderson and Gu 2024]
show promise in accurately predicting volcano deformation
in a homogeneous half space at a fraction of the computa-
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tional cost of finite element methods, but so far the emulators
are restricted to spheroidal reservoir geometries and fixed ori-
entations.
An ideal deformation model, therefore, predicts surface de-
formation with high accuracy and low computational cost,
while respecting physical boundary conditions and generaliz-
ing to a wide variety of reservoir geometries. Neural network
emulators provide a potentially viable solution for this chal-
lenge. Recent development of neural network emulators in
geophysics have successfully addressed elastodynamic wave
propagation problems [Moseley et al. 2020; Zou et al. 2024],
as well as quasi-static crustal deformation problems [Okazaki
et al. 2022]. It is important to emphasize, however, the unique
challenge in modeling volcano deformation: we seek the dis-
placement field in the crust in response to tractions on the
boundaries of magmatic reservoirs, the geometries of which,
in nature, have virtually infinite variability. The geometric
complexity of source boundary is distinct from wave prop-
agation problems parameterized with point sources and ad-
dressed by existing neural network emulators, while akin to
the problem of predicting deformation due to slip on faults.
For the latter problem, Physics Informed Neural Networks
have not yet been able to generalize to fault geometries be-
yond those provided in training [Okazaki et al. 2022].
We present a pair of Graph Neural Network (GNN) emula-
tors for modeling surface deformation due to pressure changes
in magma reservoirs. GNNs are a class of neural networks
that operate on data represented as graphs. GNNs can make
predictions via convolutions on graphs, and excel at prediction
problems over non-Euclidean domains [Zhou et al. 2020], such
as for arbitrary magma reservoir shapes and the collection of
points over which we seek displacement calculations. In geo-
physics, GNNs have recently been applied to problems such
as earthquake location and characterization [van den Ende
and Ampuero 2020; McBrearty and Beroza 2022; Zhang et al.
2022], seismic phase picking [Feng et al. 2022; Sun et al. 2023],
slow-slip detection [Costantino et al. 2024], phase association
[McBrearty and Beroza 2023], and ground motion estimation
[Bloemheuvel et al. 2022; Clements et al. 2024]. These appli-
cations have demonstrated the strength of GNNs in handling
non-uniform and time-varying grids such as variable seismic
networks. Importantly, GNNs are effective at generalizing to
a wide variability of input graphs, hence offering the possibil-
ity that, once trained, the emulators can generalize to different
reservoir geometries.

2 METHODS
We present two GNN surface deformation emulators trained
with 3D boundary element (BEM) calculations [Nikkhoo and
Walter 2015] (Section S1 in Supplementary Material 1). We
first validate our approach with the comparatively simple
problem of predicting surface deformation associated with
spheroidal reservoirs. We devise a “spheroid emulator” to pre-
dict surface deformation due to pressure changes in spheroidal
reservoirs of flexible aspect ratios, sizes, and orientations.
We then devise a “general shape emulator” to predict sur-
face deformation due to pressure changes in reservoirs with
highly irregular geometries. Here we parameterize reservoir

geometries with spherical harmonics (Figure 1). Summation
of spherical harmonic functions, 𝑌𝑚

𝑙
(θ,ψ) (θ: polar angle; ψ:

azimuthal angle; 𝑙 , 𝑚: degree and order of spherical harmonic
functions, respectively; 𝑙 ≥ 0 and −𝑙 ≤ 𝑚 ≤ 𝑙), weighted by
spherical harmonic coefficients, 𝑐𝑚

𝑙
, produces a spatially con-

tinuous function representing the reservoir surface (Figure 1;
Section 2.6), allowing for effective filtering of small-scale fea-
tures contributing negligibly to surface deformation (Figure S1
in Supplementary Material 1).
The modeling workflow can be summarized as the fol-
lowing. Both the spheroid and the general shape emulators
first transform input parameters specifying reservoir geome-
tries into graphs (Figure 2), mathematical structures describing
pair-wise relationship between “nodes” connected by “edges”.
The input to the spheroid emulator is a spatial graph, G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,
which initially occupies a 3D unit cube representing the vol-
ume containing the reservoir (Figure 2). The general shape
emulator requires an additional input graph, G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , to
explicitly represent the reservoir geometry, such that the em-
ulator generalizes to a large variety of reservoir geometries
(Figure 2). We use GNNs to perform convolutions on these
graphs, and take a three-part strategy (Section 2.1, 2.2, 2.3) to
accurately predict surface displacements, which can vary by
up to three orders of magnitude in amplitude (millimeters to
meters) and three orders of magnitude in spatial scales (hun-
dreds of meters to tens of kilometers). We first predict the
amplitude of surface displacement, 𝑈, and the spatial scales
of the deformation, 𝐿ℎ (horizontal length scale), 𝐿𝑣 (vertical
length scale). 𝐿ℎ and 𝐿𝑣 are such that, 𝐺𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , scaled by
𝐿ℎ and 𝐿𝑣, always contains the region of significant deforma-
tion, Ω. We then predict the normalized surface displacement
field, 𝑢𝑖 , or the shape of the surface deformation. Lastly, we
predict displacement vectors, 𝑢𝑖 , anywhere on the free surface
of Ω, as the product of 𝑈 and 𝑢𝑖 (Equation 1).

2.1 Formulating the elasticity problem for GNN emulators

Consider a 3D magma reservoir embedded in an otherwise
homogeneous, isotropic, elastic crust. In a right-handed Carte-
sian coordinate system, with 𝑧 axis pointing up, we denote
the centroid location of the reservoir with Δ𝑥, Δ𝑦, Δ𝑧 (neg-
ative for depth below surface). The crust is traction-free at
𝑧 = 0. Physically, we define the reservoir as a hydrauli-
cally well-connected volume region,V , enclosed by a contin-
uous, non-self-intersecting surface, S, such that over the time
scale of deformation, the effect of magma pressure changes
are appropriately represented with a uniform, outward, nor-
mal traction change, Δ𝑝, on S. For spheroidal reservoirs, S
is specified with the semi-major axis length, 𝑅𝑎 , semi-minor
axis length, 𝑅𝑏 , and counterclockwise rotation angles of the
spheroid with respect to 𝑥 and 𝑧 axes (θ𝑥 and θ𝑧 ), assuming
that the semi-major axis aligns with the 𝑧 axis prior to rota-
tions. For more general reservoir geometries (Figure 1), S is
specified with spherical harmonic coefficients, {𝑐𝑚

𝑙
}𝑙≤5, and

the maximum radius of S with respect to its centroid, 𝑅𝑚𝑎𝑥

(Section 2.6).
We seek GNN emulators predicting the static displacement,

𝑢𝑖 (subscripts denote directions; 𝑖 = 𝑥, 𝑦, 𝑧), at arbitrary sur-
face locations within Ω. Restricting the surface region for de-
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Figure 1: Schematic illustrating the use of spherical harmonics, 𝑌𝑚
𝑙

, to represent magma reservoir geometries. The hypothet-
ical reservoir, like those in nature, has many small-scale geometric features, which correspond to nonzero spherical harmonic
coefficients, 𝑐𝑚

𝑙
, at higher modes. When training the general shape Graph Neural Network emulator, we truncate at a maximum

spherical harmonic degree of 5. This restricts modeled geometric features to those with angular apertures larger than approx-
imately 36° in azimuthal angle and 30° in polar angle. Truncation at a maximum degree effectively applies a spatial low-pass
filter on the modeled reservoir geometry, and is justified, because the surface deformation associated with a shallow (depth
to reservoir centroid is comparable to reservoir dimension) hypothetical reservoir geometry and its low-pass filtered reservoir
geometry are nearly indistinguishable, up to a small difference in amplitude (Figure S1 in Supplementary Material 1). The 𝑛th
mode of spherical harmonics refers to 𝑛 = (𝑙2 + 𝑙)/2 + 𝑚 + 1, where 𝑙 is the degree and 𝑚 the order.

formation prediction to within Ω is needed, because in reality,
𝑢𝑖 (𝑥, 𝑦, 𝑧 = 0) is a smooth field extending as far as instrument
sensitivity allows for measurement. The spatial scales of de-
formation vary considerably depending on the size, centroid
depth, and geometry of the magma reservoirs. To address this
challenge, we define a rectangular domain, Ω ≡ (−𝐿ℎ/2 ≤
𝑥 ≤ 𝐿ℎ/2) ∩ (−𝐿ℎ/2 ≤ 𝑦 ≤ 𝐿ℎ/2) ∩ (−𝐿𝑣 ≤ 𝑧 ≤ 0), such
that the magnitude of surface displacement at the edges of Ω
is equivalent to approximately 5 % of 𝑈, the maximum mag-
nitude of displacement (i.e. the amplitude of the displacement
field) on the surface. This threshold is chosen to ensure that
the model domain is always big enough for the deformation
of interest. 𝐿𝑣 is then determined by 𝐿𝑣 = 𝐿ℎ/2 + |Δ𝑧 | to
ensure that the magma reservoir is always contained within
Ω. Because 𝐿ℎ , 𝐿𝑣 are defined by the magnitude of 𝑢𝑖 , which
is a priori unknown, 𝐿ℎ , 𝐿𝑣 are also treated as a prediction
target that we train neural networks to estimate.
For the forward prediction problem, we decompose 𝑢𝑖 into
the dimensionless surface displacement vector, 𝑢𝑖 , and the
scalar maximum surface displacement magnitude, 𝑈,

𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0) = 𝑈𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0) | 𝑖 = 𝑥, 𝑦, 𝑧,

(1)
which separates the prediction of the amplitude of the dis-
placement field from the shape of the displacement field. This
simplifies the training of the GNNs, because 𝑈 can vary by at
least three orders of magnitude (from millimeters, the lower
sensitivity level of geodetic instruments, to meters). If the
GNN was trained directly on 𝑢𝑖 , training samples with large
displacement amplitudes would dominate the loss values and
the model would struggle to resolve the shape of the displace-

ment field for samples with small displacement amplitudes.
By this overall decomposition (Equation 1), the three prob-
lems of specifying the spatial scale, the amplitude, and the
shape of the displacement field can be addressed separately,
maximizing the ease of applying the emulators to various vol-
cano deformation scenarios.
We exploit the linearity of the elasticity problem to simplify
the prediction task. Due to the linearity of 𝑈 with respect to
Δ𝑝/µ [Segall 2010] (µ: crustal shear modulus), the emulators
may be trained at a fixed Δ𝑝/µ value, and the output dis-
placement prediction can be directly scaled for user-specified
values of Δ𝑝/µ. Further, due to the assumption of isotropic,
homogeneous elastic half space, the displacement field is in-
variant with respect to the horizontal coordinates of the reser-
voir centroid, Δ𝑥, Δ𝑦. Hence, we train the emulators with Δ𝑥,
Δ𝑦 fixed at zero, and supply the output displacement field for
user-specified Δ𝑥, Δ𝑦 by simply shifting observation coordi-
nates accordingly. Lastly, for simplicity, we fixed the Poisson’s
ratio, ν, to a typical crustal value of 1/4, but variations in ν can
be trivially incorporated in future versions of the emulators.

2.2 Designing GNN emulators and the input graphs
We devise three GNNs—𝐺𝑢, 𝐺𝑈 , and 𝐺𝐿—to predict
𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0), 𝑈, 𝐿ℎ and 𝐿𝑣, respectively (Figure 2).
The spheroid and the general shape emulator are each com-
prised of a variant of the set of three GNNs. We formulate the
forward prediction problem for the spheroid emulators as,

𝐿ℎ, 𝐿𝑣 = 𝐺𝐿 (G𝑠𝑝𝑎𝑡𝑖𝑎𝑙), (2A)
𝑈 = 𝐺𝑈 (G𝑠𝑝𝑎𝑡𝑖𝑎𝑙), (2B)

𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0) = 𝐺𝑢 (G𝑠𝑝𝑎𝑡𝑖𝑎𝑙), (2C)
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and for the general shape emulator as,

𝐿ℎ, 𝐿𝑣 = 𝐺𝐿 (G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 ), (3A)
𝑈 = 𝐺𝑈 (G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 ), (3B)

𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0) = 𝐺𝑢 (G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 ). (3C)

The inputs to the GNNs, G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , are
graphs. Each graph is a mathematical structure comprised
of a node set, C, and an edge set, E . In our case, each mem-
ber of C is a point in 3D space. E specifies the connectivity
between pairs of nodes in C as well as the direction of the flow
of information on the graph. By passing a graph as input to
a GNN, the GNN has access to the feature vector (explained
below), and coordinates associated with each node of C, in
addition to the graph itself.
We found that, a single graph representing the model do-
main, G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = {C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , E𝑠𝑝𝑎𝑡𝑖𝑎𝑙}, contains sufficient
spatial information for the spheroid emulator to make ac-
curate displacement predictions. To construct C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , we
randomly sample node coordinates from a 3D unit cube.
We also randomly sample node coordinates based on loga-
rithmic radial distances relative to the origin to increase the
density of nodes near the center of the domain, where dis-
placement fields have the highest spatial gradient. We then
apply 𝑘-means, a model-based clustering algorithm [Fraley
1998; Zhong and Ghosh 2003], to reduce the aforementioned
node positions to a quasi-uniformly distributed set of node
coordinates in C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 . Edges in E𝑠𝑝𝑎𝑡𝑖𝑎𝑙 are defined by
linking each node in C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 to its 15 nearest neighbors.
The resulting G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 contains 1,000 nodes in total. Next,
when 𝐿ℎ and 𝐿𝑣 become available (Equation 2A, Equation
3A), we scale 𝐺𝑠𝑝𝑎𝑡𝑖𝑎𝑙 such that it occupies Ω. Each 𝑖th
node of C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is associated with a feature vector, ℎ𝑖 =

[𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑅𝑎, 𝑅𝑏, θ𝑥 , θ𝑧 ,Δ𝑥,Δ𝑦,Δ𝑧], where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are the
coordinates of the node. Thus each node of G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 shares
an identical copy of information regarding the reservoir ge-
ometry.
The spatial graph alone does not contain enough infor-
mation for the general shape emulator to accurately predict
displacement. Therefore, we modify the feature vectors of
G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and include an additional graph, G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , to ex-
plicitly encode the geometry of the reservoir. G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 =

{𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , E𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 } is a 2500-node graph representing
the surface of the magma reservoir, S. The coordinates of
C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 are determined by sampling S on a regular grid of
spherical coordinates centered on the reservoir centroid.
For input to the general shape emulator, the 𝑖th node of
C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (containing 1250 nodes) is associated with a fea-
ture vector ℎ𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒1, 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒2, 𝐵]. Let
𝐷𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 be the Euclidean distance between the 𝑖th node on
G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and the nearest node on G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 . 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒1 =

𝐷𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒/𝑅𝑚𝑎𝑥 is a normalized measure of this distance.
𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒2 = exp[−(𝐷𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒/𝑅𝑚𝑎𝑥)2/2] ∈ [0, 1] is an-
other normalized distance between the 𝑖th node on G𝑠𝑝𝑎𝑡𝑖𝑎𝑙
and the nearest node on 𝐺𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 . 𝐵 is a Boolean indicating
whether the node is on S (𝐵 = 1) or not (𝐵 = 0). Each node
of C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 is associated with a feature vector of the same

form as that on C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , and edges in E𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 are defined
by linking each node in C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 to its 15 nearest neighbors.
For the general shape emulator, G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟
are combined within 𝐺𝑢 by linking each node on C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 to
its 15 nearest neighbors on C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , and linking each node
on C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 to its 15 nearest neighbors in C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 . Combin-
ing the graphs enhances the flow of information between the
reservoir region and the surface where displacement predic-
tions are made, during graph convolution (Section 2.3). Each
edge of the combined graph additionally includes a categori-
cal feature, 𝑒𝑖 𝑗 (for the edge connecting the 𝑖th and 𝑗 th node),
indicating one of four possible edge types: 1) within C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,
2) within C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , 3) from C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 to C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , 4) from
C𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 to C𝑠𝑝𝑎𝑡𝑖𝑎𝑙 .

2.3 Graph Neural Network Architecture
GNNs perform graph convolution on graph-structured data
to supply node-, edge-, or graph-level predictions [Battaglia et
al. 2018]. Training GNNs entails training shallow Fully Con-
nected Networks (FCNs) to “transmit” and “aggregate” mes-
sages between connected nodes on a graph. Trained GNNs
utilize the structure of graphs to share information between
nodes and edges, synthesizing the input information for pre-
diction tasks.
𝐺𝑢, 𝐺𝐿 , and 𝐺𝑈 are independent GNNs, but take graphs
with similar structures as input and share similar architec-
tures. Within each GNN, we first apply ten layers of a Spatial
Aggregation module to the input graph. The Spatial Aggrega-
tion module is defined by,

ℎ
(𝑘+1)
𝑖

= φ𝑎𝑔𝑔 (ℎ (𝑘 )𝑖
, 𝑚𝑖 , POOL{φ𝑚𝑠𝑔 (ℎ (𝑘 )𝑗

, 𝑚 𝑗 ,

φ𝑒𝑑𝑔𝑒 ( [𝑥𝑖 − 𝑥 𝑗 , 𝑦𝑖 − 𝑦 𝑗 , 𝑧𝑖 − 𝑧 𝑗 , 𝑑]),

𝑒𝑖 𝑗 , ℎ
(𝑘 )
𝑔𝑙𝑏
) | 𝑗 ∈ N (𝑖)}),

(4)

following the notation of McBrearty and Beroza [2023].
ℎ
(𝑘 )
𝑖
∈ R𝐹 represents the feature vector on the 𝑖th node at

the 𝑘th layer of graph convolution with feature dimension 𝐹 .
𝑚𝑖 = φ𝑒𝑚𝑏 (ℎ (0)𝑖

) is an embedded version of the initial in-
put feature vector, where φ𝑒𝑚𝑏 (·) is a two-layer FCN with
30 hidden dimensions and 10-dimensional output. φ𝑒𝑑𝑔𝑒 (·) :
R4 → R20 is a single layer FCN that provides an embedded
representation of the relative node positions. φ𝑒𝑑𝑔𝑒 (·) takes as
input the relative positions between node 𝑖 and node 𝑗 , 𝑥𝑖−𝑥 𝑗 ,
𝑦𝑖−𝑦 𝑗 , 𝑧𝑖−𝑧 𝑗 , and, 𝑑, the squared L2 norm of the distance be-
tween the connected nodes. 𝑒𝑖 𝑗 , combined with the output of
φ𝑒𝑑𝑔𝑒 (·), represents the edge data. ℎ (𝑘 )𝑔𝑙𝑏

= Mean𝑖φ𝑔𝑙𝑏

(
ℎ
(𝑘 )
𝑖

)
denotes a global summary vector, taken as the average node
feature vector from the entire graph at each level of graph
convolution (φ𝑔𝑙𝑏 (·) : R20 → R3 is a FCN). N(𝑖) is the set of
neighbors of node 𝑖.
The trainable neural networks are given as the mes-
sage passing operator, φ𝑚𝑠𝑔 (·), and the aggregation opera-
tor, φ𝑎𝑔𝑔 (·), both of which are single-layer FCNs of the form
φ(ℎ) = σ(𝑊ℎ + 𝑏). For most layers, 𝑊 ∈ R(20,63) , 𝑏 ∈ R20,
and σ is the Parametric Rectified Linear Unit (PReLU) acti-
vation function. φ𝑚𝑠𝑔 transforms information stored in each
neighbouring node, 𝑗 ∈ N (𝑖), and the corresponding edge
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Predict maximum displacement magnitude  

Predict spatial extent of deformation field 

Generate 
spatial graph,             ,
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Compute surface displacements
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Figure 2: Forward modeling workflow for the spheroid and general shape emulators. The spheroid emulator takes a spatial
graph, G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , as input. G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 encodes parameters specifying the geometry of the reservoir (𝑅𝑎, 𝑅𝑏: semi-major and -
minor axis lengths; Δ𝑥,Δ𝑦, Δ𝑧: centroid coordinates in 𝑥, 𝑦, and 𝑧; θ𝑥 , θ𝑧 : counterclockwise rotation angles about the 𝑥 and
𝑧 axis, respectively, assuming the semi-major axis aligns with +𝑧-axis prior to rotations. The general shape emulator takes
G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and a graph explicitly representing the geometry of the reservoir, G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , as input. G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and G𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 encode
parameters specifying the geometry of a general-shape reservoir (𝑅𝑚𝑎𝑥 : maximum radius from the centroid to the surface of
the reservoir; {𝑐𝑚

𝑙
}𝑙≤5: spherical harmonics coefficients up to 𝑙 = 5; Δ𝑥, Δ𝑦, Δ𝑧). Each emulator utilizes a three-step strategy to

predict surface displacements, with each step applying one of the Graph Neural Networks (𝐺𝑈 , 𝐺𝐿 or 𝐺𝑢) to the input graphs.
On the right hand side are examples of predicted radial displacement, 𝑢𝑟 = (𝑢2𝑥 + 𝑢2𝑦)1/2, and vertical displacement, 𝑢𝑧 , at the
surface. Because displacement scales linearly with Δ𝑝/µ (µ: crustal shear modulus; Δ𝑝: reservoir pressure change), Δ𝑝/µ is
fixed at a constant for all emulators. Final displacement output is then scaled based on user-specified Δ𝑝/µ. Ω ≡ (−𝐿ℎ/2 ≤
𝑥 ≤ 𝐿ℎ/2) ∩ (−𝐿ℎ/2 ≤ 𝑦 ≤ 𝐿ℎ/2) ∩ (−𝐿𝑣 ≤ 𝑧 ≤ 0) is a 3D rectangular volume that contains the region of significant
deformation.
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connecting node 𝑖 and node 𝑗 into “messages”. Following this,
a “pooling” operation such as mean-, max-, or sum-pooling
is taken over these transformed “messages”, while preserv-
ing the feature dimension (i.e. POOL : R |N (𝑖) |×𝐹 → R𝐹 ).
This “aggregate” message from all neighbors of node 𝑖 is then
concatenated with ℎ (𝑘 )

𝑖
and 𝑚𝑖 , and transformed by φ𝑎𝑔𝑔 to

produce the updated feature vector, ℎ (𝑘+1)
𝑖
.

An important aspect of message passing is that it occurs in
parallel for all nodes, while sharing the same trainable neural
networks, φ𝑚𝑠𝑔 and φ𝑎𝑔𝑔. In other words, the same GNN
can utilize graphs of variable geometry and connectivity. The
number of trainable weights in the GNN are independent of
the size of the input graphs.
To facilitate the flow of information through the GNNs,
we add two additional features. First, at every third layer
of Spatial Aggregation (Equation 4), we combine the node
feature vectors from two layers prior with the current node
feature vectors. That is, for layers 𝑘 ∈ {2, 5, 8}, we use
ℎ
(𝑘 )
𝑖
← ℎ

(𝑘 )
𝑖
+ ℎ (𝑘−2)

𝑖
as the output of the Spatial Aggregation

module. These short-cuts of information transmission are in-
spired from the GINE architecture [Xu et al. 2018], enabling
smoother training and the ability to detect more subtle features
in graph structures. Additionally, at every third layer of 𝐺𝑢,
instead of using a 𝑘-nearest neighbor graph, we use a Cayley
graph [Hoory et al. 2006], which has very effective long-range
connectivity properties. Including this type of graph at every
few layers of graph convolution has been shown to enable
more effective flow of global information [Deac et al. 2022].
For each GNN, we apply the “Prediction” module, after re-
peatedly applying the Spatial Aggregation modules. For 𝐺𝑈

and 𝐺𝐿 , we take the average node feature vector across the
graph and map this to the scalar prediction values with a
two-layer FCN of 20 hidden dimensions. For 𝐺𝑢 within the
spheroid emulator, we implement a single layer of graph at-
tention mechanism [Veličković et al. 2017] to predict displace-
ment vectors at any query coordinates on Ω. The graph atten-
tion mechanism (comprised of FCNs with 30 hidden dimen-
sions), similar to the message passing operator, weights and
transforms information stored in neighbouring nodes into de-
sired prediction quantities. For 𝐺𝑢 within the general shape
emulator, we implement two graph attention mechanisms.
One graph attention mechanism uses 15 nearest neighbors on
G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 to predict 𝑢𝑖 , and the other uses 10 nearest neighbors
on G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 to make the same prediction. We then take the
final prediction as the average of the two. With two graph
attention mechanisms relying on different numbers of neigh-
boring nodes, 𝐺𝑢 can predict displacement fields at various
scales, and the predicted 𝑢(𝑥, 𝑦 ∈ Ω, 𝑧 = 0) is less sensitive to
the spatial distribution of neighboring nodes in G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 .

2.4 Building large labeled datasets

We build two large labeled data sets for training and vali-
dating the emulators. Each data set is comprised of parame-
ters specifying reservoir geometry, depth, pressure change, as
well as associated surface displacement fields. The displace-
ment fields are computed with triangular boundary elements
[Nikkhoo and Walter 2015]. The code (Section S1 in Sup-

plementary Material 1) is benchmarked against finite element
methods and a host of analytical/semi-analytical solutions for
spheroidal reservoirs [Crozier et al. 2023]. For each realization
of magma reservoir geometry, 2 × 103 displacement vectors
are computed at the surface. The locations for displacement
predictions are randomly sampled in Cartesian coordinates
and randomly sampled on logarithmic radial distances rela-
tive to the origin, the latter method of which improves the
coverage of displacement fields with the highest spatial gradi-
ent.
The data set for the spheroid emulator corresponds to
124,996 distinct realizations of reservoirs (112,477 used for
training and 12,519 used for validation), each of which cor-
responds to semi-randomly sampled reservoir aspect ratio,
α ≡ 𝑅𝑎/𝑅𝑏 ∈ [0.1, 5], volume, 𝑉 , Δ𝑧 ∈ [−20,−0.5] km,
θ𝑥 ∈ [0, π/2], and θ𝑧 ∈ [0, 2π]. α, 𝑉 are additionally sub-
jected to the constraints of 𝑅𝑏 = (3𝑉/(4πα))1/3 ≤ 20 km,
0.1 km ≤ 𝑅𝑎 ≤ (|Δ𝑧 | − 0.1) km, and that the top of the
reservoir is at least 100 m below the free surface. The data
set for the general shape emulator corresponds to 536,871
distinct realizations of reservoirs (483,183 used for training
and 53,688 used for validation), each of which corresponds to
randomly sampled 𝑐00 ∈ (0, 20], {Re(𝑐

𝑚
𝑙
)}0<𝑙≤5 ∈ [−1, 1],

{Im(𝑐𝑚
𝑙
)}0<𝑙≤5 ∈ [−1, 1], Δ𝑧 ∈ [−20,−0.5] km, 0.1 ≤

𝑅𝑚𝑎𝑥 ≤ (|𝑑𝑧 | − 0.1) km. {𝑐𝑚𝑙 }𝑚=0 are required to be real
numbers so that superposition of spherical harmonics results
in a real shape (Section 2.6). The spherical mode 𝑐00 is de-
signed to be larger than coefficients for other modes to avoid
singularities in the curvature of reservoir geometries. We only
sample 𝑐𝑚

𝑙
up to 𝑙 = 5, which effectively restricts the emulator

to predict surface deformation due to reservoir features with
angular apertures larger than approximately 36 degrees in az-
imuthal angle and 30 degrees in polar angle (Figure 1). Reser-
voir features with smaller angular aperture than this thresh-
old are unlikely to contribute significantly to surface defor-
mation (Figure S1 in Supplementary Material 1), considering
the typical depth-to-radius ratio of magma reservoirs. The
data set is comprised of four subsets. Subset 1 contains reser-
voir geometries built with randomly sampled 𝑐𝑚

𝑙
(subjected to

aforementioned constraints). Subset 2 corresponds to reser-
voir geometries that approximate spheroids of various aspect
ratios. Subset 2 complements subset 1 because geometries
in subset 1 do not necessarily approximate oblate or prolate
spheroids due to the randomness in sampling the coefficients.
Subset 3 is constructed with the same method as for subset
2, but with small perturbations added to the reservoir geome-
tries using randomly sampled spherical harmonics. Subset 4
is comprised of reservoir geometries corresponding to any sin-
gle spherical harmonic mode equal to or higher than degree
4, complemented with a small spherical mode to ensure the
absence of singularities in curvature.

2.5 Training the neural networks

We train 𝐺𝐿 and 𝐺𝑈 for 50,000 update steps and 𝐺𝑢, for
150,000 update steps, with a batch size of 100. We use
the Adam optimizer [Kingma and Ba 2014] with a learning
rate of 0.001, and the models are implemented in PyTorch
Geometric [Fey and Lenssen 2019]. We first train 𝐺𝐿 with
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a loss function defined as the L2 norm of residuals between
GNN predicted and BEM predicted 𝐿ℎ and 𝐿𝑣. Because 𝐺𝑢

and 𝐺𝑈 require the prediction of 𝐿ℎ and 𝐿𝑣 to scale G𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,
𝐺𝐿 is used in inference mode with the weights held fixed dur-
ing the training of 𝐺𝑢 and 𝐺𝑈 . We then train 𝐺𝑈 with a loss
function defined as the L2 norm of residuals between GNN
predicted and BEM predicted 𝑈. Lastly, we train 𝐺𝑢 with a
loss function defined as the L2 norm of residuals between the
predicted and true 𝑈𝑢𝑖 (𝑥, 𝑦 ∈ Ω, 𝑧 = 0), normalized by the
by the amplitude of true surface deformation. This procedure
enables 𝐺𝑢 to compensate for the bias of 𝐺𝑈 . In practice, we
find this normalization procedure necessary because the error
in predicted displacement amplitude accounts for the majority
of residuals between the target and the predicted displacement
field.

2.6 Parameterizing reservoir geometry using spherical har-
monics

Any closed, square integrable function 𝑓 (θ,ψ), with support
on polar angles (θ ∈ [0, π]: from +𝑧 to −𝑧) and azimuthal
angles (ψ ∈ [0, 2π]: counterclockwise from +𝑥), can be rep-
resented with a superposition of spherical harmonic functions
of degree 𝑙 and order 𝑚, 𝑌𝑚

𝑙
(θ,ψ),

𝑓 (θ,ψ) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝑐𝑚𝑙 𝑌
𝑚
𝑙 (θ,ψ), (5)

where 𝑐𝑚
𝑙
denotes complex spherical harmonic coefficients

(e.g. Figure 1).
We seek to represent a surface, S ∈ R3, enclosing a star-
shaped domain (defined as a set 𝑃 ∈ R3, where there exists a
𝑝0 ∈ 𝑃 such that for every 𝑝 ∈ 𝑃, the line connecting 𝑝0 to 𝑝
lies in 𝑃), V , with the superposition of spherical harmonics.
Due to the symmetry of 𝑌𝑚

𝑙
(θ,ψ) and 𝑐𝑚

𝑙
, we have,

S ≡ 𝑓 (θ,ψ) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=0
(2 − δ𝑚0)Re(𝑐𝑚𝑙 𝑌

𝑚
𝑙 (θ,ψ)), (6)

where δ𝑚0 is the Kronecker delta. Here 𝑓 (θ,ψ) maps each
θ, ψ to a unique radius, 𝑅, from the centroid. We adopt the
acoustic convention for the spherical harmonic functions

𝑌𝑚
𝑙 (θ,ψ) ≡

√︄
2𝑙 + 1
4π
(𝑙 − 𝑚)!
(𝑙 + 𝑚)! 𝑃

𝑚
𝑙 (cos θ)𝑒

𝑖𝑚ψ. (7)

𝑃𝑚
𝑙
is the associated Legendre polynomial satisfying the fol-

lowing relationship,

𝑃−𝑚𝑙 = (−1)𝑚 (𝑙 − 𝑚)!(𝑙 + 𝑚)! 𝑃
𝑚
𝑙 for 𝑚 > 0. (8)

Given known reservoir geometry, S ≡ 𝑓 (θ,ψ), 𝑐𝑚
𝑙
can be

computed through:

𝑐𝑚𝑙 =

∫ 2π

0

∫ π

0
𝑓 (θ,ψ)𝑌𝑚

𝑙 (θ,ψ) sin θ𝑑θ𝑑ψ (9)

where overbar indicates complex conjugate.

3 RESULTS
3.1 Graph Neural Network deformation emulators
The trained GNN emulators predict surface deformation with
reasonable accuracy and generalizability, at low computation
cost. Here we show predictions of surface displacements for
four representative reservoir geometries. Additional examples
for both emulators are shown in Figures S2–S6 of Supple-
mentary Material 1. All parameters for these simulations are
in Table S1–S2 of Supplementary Material 1.
The spheroid emulator not only accurately predicts the
asymmetry in surface deformation for a tilted, conduit-shaped
reservoir in the training data set (Figure 3A), but also the char-
acteristic hour-glass like surface deformation for a dike-like
reservoir in the validation data set (Figure 3C). The general
shape emulator accurately predicts the complexity of the sur-
face deformation for a magma reservoir with a north-south
trending ridge at the top (Figure 3B; in the training data
set). For a reservoir geometry with a threefold axisymmetry
with regard to the 𝑧-axis (synthesized with spherical harmonic
modes, 𝑌34 and𝑌

0
0 , the coefficients of which are randomly cho-

sen), the general shape emulator approximately captures the
corresponding threefold axisymmetry in the surface deforma-
tion (Figure 3D). In each case, predicted displacement vectors
in 𝑥, 𝑦, and 𝑧 have comparable errors, which are small com-
pared to the amplitude of the target displacement field. A
forward calculation for 2×103 displacement vectors takes ap-
proximately 0.5 s on a single GPU and 2.5 s on a laptop with
4 CPUs. This contrasts with tens of minutes for BEM calcula-
tions with sufficiently fine discretization to capture curvatures
of reservoir surface [Crozier et al. 2023], thus representing three
orders of magnitude of speed up.

3.2 Assessing the accuracy and generalizability of emulators
Once the emulators are trained, we quantify the difference
between the target displacement, 𝑢𝑡𝑎𝑟𝑔𝑒𝑡

𝑖
, and the GNN emu-

lator prediction, 𝑢𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟
𝑖

, at any surface location, 𝑥′ , 𝑦′ ∈ Ω,
𝑧
′
= 0, with a scalar measure of relative error,

Error(𝑥′ , 𝑦′ ) =
| |𝑢𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟

𝑖
(𝑥′ , 𝑦′ ) − 𝑢𝑡𝑎𝑟𝑔𝑒𝑡

𝑖
(𝑥′ , 𝑦′ ) | |

𝑈𝑡𝑎𝑟𝑔𝑒𝑡
, (10)

where | | · | | produces the L2 norm of a given vector. The
denominator, 𝑈𝑡𝑎𝑟𝑔𝑒𝑡 , is the amplitude of the target surface
displacement field, such that residuals are normalized for each
distinct magma reservoir geometry. We compute the median
error for each realization of reservoir geometry—i.e. comput-
ing the relative errors for all displacement vectors associated
with a single reservoir geometry using Equation 10, and then
taking the median value of the errors. For both the spheroid
and general shape emulator, the distributions of median errors
have modes at approximately 1 %, and fall predominantly be-
low 2 % (Figure 4). The distribution of median errors for the
training and validation data sets are nearly indistinguishable
(insets of Figure 4A, 4B), indicating the generalizability of the
emulators to reservoir geometries distinct from (albeit statisti-
cally similar to) those in the training data set.
A close inspection indicates that the prediction error is sys-
tematically higher for spheroids with high or low aspect ratios
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Figure 3: Verifying surface deformation predicted by GNN emulators. [A] Example 1 for the spheroid emulator: a conduit-like
reservoir with highly asymmetric surface deformation. [B] Example 1 for the general shape emulator: a reservoir with a north-
south trending ridge on the top and asymmetric surface deformation. [C] Example 2 for the spheroid emulator: a dike-like
reservoir with characteristic hour-glass like surface deformation. [D] Example 2 for the general shape emulator: a reservoir
with threefold axisymmetry at the top, which is reflected in the surface deformation. 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 , 𝑢𝑟 : displacements in 𝑥, 𝑦, 𝑧
directions and radial displacements, respectively. Residuals are computed by subtracting the target from the GNN prediction.
Radial displacements of [D] are color-saturated to accentuate the threefold axisymmetry. Reservoir geometries in [C] and [D]
are not in the training data set. All parameters relevant to the simulations can be found in Table S1 and S2 of Supplementary
Material 1.

(Figure 4A). This is at least partly due to biases in the train-
ing data sets—the lower the sphericity of the magma reser-
voirs, the fewer they are in the training data, because magma
reservoirs with low sphericity require more triangular ele-
ments for discretization and are more expensive to compute
(thus resulting in fewer displacement data sets computed for
low-sphericity reservoirs in a pre-set amount of time). It is

also plausible that, the more complex surface deformation
due to reservoir geometries with low sphericity is inherently
more difficult for the emulators to learn. For the general
shape emulator, prediction errors have a bi-modal distribu-
tion strongly controlled by the strength of the spherical mode,
|𝑐00 |, which can be understood as a measure of sphericity (Fig-

Presses universitaires de �rasbourg Page 102

https://doi.org/10.30909/vol.08.01.95109
https://doi.org/10.30909/vol.08.01.95109


VOLC

V

NIC

V

8(1): 95–109. https://doi.org/10.30909/vol.08.01.95109

ure 4B). At relatively high sphericity (|𝑐00 | ≥ 10), the errors are
consistently low across various |𝑐00 |, because fewer general-
shape reservoir geometries have extreme aspect ratios, com-
pared to spheroids, which results in consistent computational
costs for BEM calculations across magma reservoir geometries
(hence evenly distributed training data sets for reservoir ge-
ometries with various levels of sphericity). At lower sphericity
(|𝑐00 | < 10), however, the errors are notably higher, again po-
tentially reflecting the challenges for the emulators to capture
surface deformation due to highly irregular reservoir geome-
tries.
Measuring the relative error using Equation 10 avoids nor-
malizing displacement vectors by target displacement vectors
that have virtually zero length (i.e. displacements outside of
the main region of deformation), but tends to underestimate
the true error. For the general shape emulator, we also re-
port that the distribution of 90th percentile relative error has
a mode at approximately 3.5 %, and falls predominantly be-
low 15 % (Figure S9 in Supplementary Material 1). Therefore,
an upper bound of error for the general shape emulator is
approximately 15 %.

100
80
60
40
20
0

0 4 6 8 102

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.1
1.2
1.3
1.5
1.6
1.8
2.0
2.5
4.0
5.0

PD
F

Percent error

Training 
(n =112,477)
Validation
(n = 12,519)

0
2 4 6 8 10

Percent error

0
Percent error

=

2 4 6 8 10

=350

250
200

50

0

200

150

100

50

0

[0, 2]
[2, 4]

[10, 12]
[12, 14]
[14, 16]
[16, 18]
[18, 20]

100

300

150

A

B

PD
F

[4, 6]
[6, 8]
[8, 10]

20
0

40
60
80

100
120
140

0 4 6 8 102
Percent error

Training 
(n = 483,183)
Validation
(n = 53,688)

Figure 4: Probability density functions (PDFs) of emulator pre-
diction error. [A] The distribution of median relative error for
each realization of spheroidal reservoir geometry, plotted for
various spheroid aspect ratios, α. [B] The distribution of me-
dian relative error for each realization of general reservoir ge-
ometry, plotted for various strengths of the spherical mode,
|𝑐00 |. Insets show the comparison of median relative error dis-
tributions for training versus validation data sets. Relative error
is defined by Equation 10.

4 DISCUSSION

4.1 Bayesian inversions with GNN emulators and implica-
tions for the resolvability of reservoir geometries

A persistent challenge in understanding the architecture of
magmatic systems is in reconciling the divergent perspec-
tives offered by different geophysical imaging methods [Segall
2019]. In particular, seismic and geodetic imaging often yield
dramatically different magma reservoir geometries. A repre-
sentative example is Axial Seamount, where seafloor geodesy
reveals a steeply dipping prolate spheroidal magma reservoir
[Nooner and Chadwick 2016], but seismic reflection imaging
reveals a complex reservoir comprising of interconnected ver-
tically offset sills [Carbotte et al. 2020]. The fact that geode-
tic inversions almost always yield spheroidal and crack-like
reservoir geometries suggests either 1) the inverse problem
is severely ill-posed, given limited spatial coverage of defor-
mation measurements and the low-pass nature of static de-
formation [Love 1892], or 2) the forward model is under-
parameterized. For geophysical inverse problems, both 1) and
2) are often true, but the ill-posedness of the inverse problem
can nonetheless be mitigated with regularization and high-
quality deformation data that is semi-continuous in space.
Among methods for measuring surface deformation, Interfer-
ometric Synthetic Aperture Radar (InSAR) has the distinct ad-
vantage of providing deformation measurements with good
enough spatial coverage to resolve complexities in reservoir
geometries. With future technological advances in SAR satel-
lites, such as offered by NISAR (NASA-ISRO Synthetic Aper-
ture Radar), it is expected that InSAR deformation at 12-day in-
tervals would be extended to virtually all subaerial volcanoes
[Poland and Zebker 2022]. Thus robust forward and inverse
modeling workflows allowing for flexible parameterization of
reservoir geometries will be complimentary to the increasing
availability of deformation measurements.
Indeed, surface deformation can reveal signs of complexi-
ties in reservoir geometries, but so far, inversions, if performed
at all, often require manual selection and tuning of reservoir
geometries. For example, at Mauna Loa, it has been suggested
that the simultaneous pressurization of a spheroidal magma
reservoir and a spatially overlapping dike were required to
explain complex surface deformation patterns between 2002
and 2005 [Amelung et al. 2007]. At Ambrym volcano, mechan-
ical interactions between a depressurizing subcaldera magma
reservoir and a dike intrusion were inferred via inversion of
surface deformation [Shreve et al. 2021]. At Yellowstone, a sili-
cic reservoir comprised of two laterally offset sub-reservoirs
connected by a central conduit was inferred from surface de-
formation between 2005 and 2006 [Aly and Cochran 2011],
although to our knowledge, no inversion was performed.
To demonstrate the applicability of the emulators in re-
solving magma reservoir geometries, we perform Bayesian
Markov Chain Monte Carlo (MCMC) inversions with noise-
free, synthetic surface deformation (see Section S2 in Sup-
plementary Material 1 for inversion method) and non-
informative priors (uniformly distributed probability density
within bounds of parameters). We note that, for inversions
with real deformation data, it is often desirable to use in-
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Figure 5: Bayesian MCMC inversion with the synthetic deformation for a spheroidal reservoir, using the spheroid emulator as
forward model. [A] Probability density functions (PDFs) for inverted parameters (Δ𝑝/µ is assumed to be known and fixed
at 10−3). Note that the histograms are zoomed in close to the MAP values. The full range of parameters considered during
the inversion is much broader (Section S2 in Supplementary Material 1) [B] Target and maximum a posteriori (MAP) reservoir
geometries. Also shown are 100 randomly sampled, high-likelihood reservoir geometries projected onto x = 0 km, y = 0 km, and z
= 0 km planes. [C] Target, MAP, and residual surface displacements. The residual displacement field is obtained by subtracting
the MAP from the target displacement field. The MCMC inversion ran for 105 iterations.

dependent constraints on reservoir geometry (parameterized
using spherical harmonics, for example), deduced from alter-
native geophysical imaging methods, as priors to regularize
inversions. The general shape emulator, in combination with
Bayesian inversion, provides the capability to account for that
prior knowledge.

For a steeply tilted, extremely elongated spheroidal reser-
voir with a semi-major axis length of 5.8 km, and a centroid
depth of 7.3 km (shown in Figure 4A), we found that, the ori-
entation, aspect ratio, and centroid location of the reservoir
can be accurately and precisely constrained with Bayesian in-
version (Figure 5A, 5B). The mean of the posterior probability
density function (PDF) of each inverted parameter centers on
the target value, and has small uncertainty. The maximum
a posteriori (MAP) model accurately reproduces the ground
deformation of the target model (Figure 5C). The resolution
power of the inversion, however, is expected to decrease as
the depth to reservoir centroid approaches the characteristic
dimensions of the reservoir. A comprehensive sensitivity anal-
ysis for inversion is beyond the scope of our current study.

For a reservoir with an approximately north-south trending
ridge on the top (with a prominence of 4 km relative to the rest
of the reservoir) and a centroid depth of 11.3 km (shown in
Figure 3B), we found that, the reservoir centroid location and
geometry can be accurately constrained via Bayesian inversion
(Figure 6). Although not all of the spherical harmonic modes
of the MAP model agree with those of the target model (Fig-
ure 6A), the MAP model reproduces the prominence on the
top surface of the target reservoir geometry (Figure 6D) and
accurately predicts the asymmetric ground deformation due
to that prominence (Figure 6C). The resemblance between the
MAP reservoir geometry and the target geometry is not due
to stochasticity of MCMC sampling, because random samples
from the posterior PDFs exhibit geometric features that are
consistently in agreement with those of the target model (Fig-
ure 6D). The resolvability of the target reservoir geometry is
further supported by the reservoir geometry at 95 % confi-
dence level (estimated by determining the volume completely
enclosed by at least 95 % of reservoir geometries randomly
selected from the posterior PDFs), which resembles the tar-
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Figure 6: Bayesian MCMC inversion with the synthetic deformation for a reservoir with a north-south trending ridge on the top,
using the general shape emulator as forward model. [A] Probability density functions (PDFs) for each inverted parameter (Δ𝑝/µ
is assumed to be known and fixed at 10−3). [B] Volume of 95 % relative probability obtained by aggregating 100 high-likelihood
reservoir geometries from the posterior distribution. Colorbar indicates the depth range of this volume in kilometers. [C] Target,
MAP, and residual surface displacements. The residual displacement field is obtained by subtracting the MAP from the target
displacement field. [D] Target, MAP, and two random samples of reservoir geometries rendered from the posterior distribution.
The MCMC inversion ran for 2.5 × 105 iterations.

get geometry, albeit with a less prominent ridge on the top
(Figure 6B). In theory, we expect that higher spherical har-
monic modes have larger uncertainty in posterior PDFs, be-
cause smaller features in elastic medium results in more lo-
calized deformation (by Saint-Venant’s principle, e.g. Love
[1892]). In practice, such trends are not apparent for this
particular reservoir geometry, potentially due to the spheri-
cal mode (𝑐00) dominating the overall geometry. Likely for the
same reason, the posterior PDF for each spherical harmonic
coefficient tends to have mean near zero.
We further test the performance of the general shape em-
ulator with synthetic surface deformation containing low-
amplitude features that correspond to complexities in reser-
voir geometry (< 20 % deviation from the deformation pat-
tern of a spherical reservoir). This is a much more stringent
test than the previous case (Figure 6), where the asymmetry in
target surface deformation is very prominent. For a reservoir
with a threefold axisymmetry with regard to the 𝑧-axis (each
protrusion is approximately 0.7 km in scale) and a centroid
depth of 1.25 km (shown in Figure 3D), we found that, the
reservoir centroid location and maximum radius can be accu-
rately constrained via Bayesian inversion (Figure 7A), but the
reservoir geometry is not robustly constrained, despite that

the MAP model largely reproduces the target surface defor-
mation (Figure 7C). Specifically, the MAP model overestimates
the spherical mode of the target geometry, 𝑐00, and fails to re-
solve the only non-zero mode, 𝑐34. To visualize the geodetically
resolvable features of the reservoir geometry, we again plot the
reservoir geometry at 95 % confidence level (Figure 7B), which
confirms that reservoir geometries in posterior PDF fail to con-
verge to the target magma reservoir, despite that randomly
chosen models from the posterior PDFs exhibit features re-
sembling the target geometry (Figure 7D). The posterior PDFs
show consistent uncertainty at all spherical harmonics modes
(Figure 7A), which is likely due to the prediction error of the
general shape emulator (< 15 %; Section 3.2) being compa-
rable to features in this target deformation field. This is one
of the potential shortcomings of the general shape emulator,
which we elaborate below.

4.2 Limitations of current emulators and future directions

We demonstrate that GNN emulators represent a promising
alternative for solving both forward and inverse problems re-
lated to elastostatic crustal deformation (Figure 3, Figure S2–
S6 in Supplementary Material 1, Figure 5, Figure 6). However,
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Figure 7: Bayesian MCMC inversion with the synthetic deformation for a reservoir with threefold axisymmetry at the top, using
the general shape emulator as forward model. [A] Probability density functions (PDFs) for each inverted parameter (Δ𝑝/µ is
assumed to be known and fixed at 10−3). [B] Volume of 95% relative probability obtained by aggregating 100 reservoir geometries
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the accuracy of the emulators is limited by the accuracy of the
training data set. Existing triangular BEM methods for model-
ing quasi-static deformation are known to have convergence
issues [Crozier et al. 2023] and show non-negligible discrep-
ancy with finite element solutions when the reservoir geome-
try approaches high radius of curvature (Figure S7, S8 in Sup-
plementary Material 1). One future direction is to incorporate
constraints of physics [Raissi et al. 2019] in the form of loss
functions predicated on the governing equations of elasticity
and boundary conditions, while training the emulators. This
approach would create virtually unlimited training cases and
prevent the propagation of solver errors from the training data
sets into the emulators. A major benefit of training emula-
tors purely with physics-informed loss is the ability to extend
the emulators to incorporate further complexities in physics
(elastic heterogeneity, viscoelasticity etc.), without the need for
first producing extensive training datasets. Physics-informed
losses can also improve the generalizability of the emulators to
reservoir geometries statistically distinct from the training data

by constraining the learned model to more accurately follow
the underlying PDEs [Li et al. 2024].
A limiting factor on the generalizability of the emulator is
the difficulty of finding optimal GNN architecture that allows
for modeling surface deformation data at both short- and long-
spatial scales. With a single spatial graph (Section 2), simul-
taneously modeling surface deformation over the entire spa-
tial domain, Ω (often 10 to 20 reservoir dimensions across),
and surface deformation within a few reservoir dimensions
is challenging. This limitation can potentially be overcome
with graph architectures that promote message passing across
scales, such as Hierarchical Support Graphs [Vonessen et al.
2024].
With future improvement to the accuracy of the emulators,
tilt, strain, and stress could be derived from the predicted dis-
placement fields. Combined with increasing availability of
space-based deformation measurements such as InSAR, ma-
chine learning based emulators promise capabilities for rapid
modeling and inversion of volcano deformation, unlocking
new potentials for volcano geodesy.
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