Supplementary Information for:

Graph Neural Network based elastic deformation
emulators for magmatic reservoirs of complex geometries

Taiyi A. Wang!:?2, Tan W. McBrearty', Paul Segall®

IDepartment of Geophysics, Stanford University
2Now at Seismological Laboratory, California Institute of Technology

Contents of this file
Section S1, S2
Table S1, S2
Figure S1 - S9

1 Dislocation boundary element model

The surface deformation data sets used to train the Graph Neural Network Em-
ulators are computed using a customized boundary element code based on triangular dis-
location solutions (Nikkhoo & Walter, 2015), which we describe in details here. The goal
is to solve for the surface displacement due to pressurization/depressurization of a 3D
magma reservoir in a homogeneous, isotropic, linear elastic half space. The magma reser-
voir is represented as a cavity, the walls of which are subjected to traction changes due
to pressure change in magma. Solutions of the displacement field thus satisfy the follow-
ing equations,

djoij =0, (1)

Oij = 2pi€i5 + Aexrdij, (2)
T; = [0,0,0]7, (3)
Tin;| =—-A s 4

nil P (4)

where indices ¢, j = x, ¥, z and repeated indices indicate summation. o;;, €;;, and T; =

o;jn; are the perturbation stress tensor, strain tensor, and traction changes relative to

an equilibriated background state. n; is the normal vector relative to surfaces (upward

for the free surface and outward for cavity walls). Eqn. 1 and 2 are the static equilib-

rium equation and the Hooke’s law for isotropic material (u: shear modulus, \: Lamé
constant), respectively. Eqn. 3 describes the traction-free boundary condition at the sur-
face. Eqn. 4 describes the spatially uniform normal traction change (following tension
positive convention) at the boundary of the cavity, S, induced by pressure change in magma,
Ap. Additionally, all shear tractions on S vanish.

We first tessellate S with N triangular elements, and solve for the dislocation (rel-
ative motion across an element) at each triangular element. Denoting the perturbation
traction at the p th element as 77 and the dislocation at the ¢ th element as d7, the two
quantities are related by the stiffness matrix, S},

TP = §Pi5¢ (5)
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where p,qg = 1,2,...,N. S%q relates dislocation in direction j at element g with trac-
tion changes in direction ¢ at element p, and is computed using dislocation boundary el-
ement solutions (Nikkhoo & Walter, 2015).

In practice, it is desirable to work with dislocation and traction changes in coor-
dinate systems local to each element, given the non-Euclidean geometry of magma reser-
voirs. Here we denote the two orthogonal directions co-plane with the triangular element
as ¢ and 6, and the direction normal to the element as r. Because Eqn. 1, 2, 3 are au-
tomatically satisfied by the dislocation solutions, we next apply the boundary condition
on the cavity surface (Eqn. 4) in local coordinates and invert the traction-dislocation
relationship (Eqn. 5), obtaining dislocations at each element, g,

o = {5y 'Y, ©)

where i,j = ¢,0,r and TF = [0,0, —Ap]T. Displacements on the surface are then com-
puted using the half-space Green’s functions relating dislocation with displacements (Nikkhoo
& Walter, 2015).

2 Bayesian Markov Chain Monte Carlo inversion

We employ a Bayesian framework to estimate the probability density functions (PDFs)
of model parameters (reservoir geometry, location, volume, pressure change). The Bayes’
theorem states

P(ml|d) x P(dlm)P(m), (7)

where m denotes model parameters and d the data. Thus the probability of a model con-
ditioned on data, P(m/|d) (i. e. the posterior), is proportional to the product between
the probability of the data conditioned on the model P(d|m) (i.e. the likelihood) and
the probability of the model parameters independent of the data, P(m) (i.e. the prior).

We employ uniform prior distributions for parameters in all inversions in this study.
For the inversion with synthetic deformation associated with a spheroidal reservoir (Fig.
5 in the main text), we use the following bounds on the parameters: V = [1,100] km?®,
a € [1,10], Az € [-10,10] km, Ay € [-10,10] km, Az € [-20, —1] km, 0, € [0,7/2],
0., € [0,27]. Ap/u is fixed at 10~3. For the inversion with synthetic deformation as-
sociated with the reservoir with a north-south trending ridge on the top (Fig. 6 in the
main text), we use the following bounds on the parameters: Az € [—10, 10] km, Ay €
[—10,10] km, Az € [—100, —1] km, R4 € [0.316,10] km, ¢] € [0,20], Re({c[" }o<i<s) €
[—1,1], and Im({c" }o<i<5) € [-1,1]. Ap/p is fixed at 1073, All parameter bounds are
the same for the reservoir with a threefold axisymmetry on the top (Fig. 7 in the main
text), except that Az € [-10, —1] km.

We estimate the likelihood using the affine-invariant Markov Chain Monte Carlo
(MCMC) ensemble sampler (Foreman-Mackey et al., 2013). We assume that the obser-
vation errors are normally distributed, such that,

P(dlm) = (2m)"M/2det(C) ™12 x exp[—=(d — G(m))TC~}(d — G(m))]. (8)

1

2
Here, M is the total number of data points, C' the data covariance matrix, G is the for-
ward model operator (i. e. the emulators).

The accuracy of Eqn. 8 is predicated on having the correct covariance matrices for
each data set. By definition, the synthetic data do not have observation error, so we as-
sume that C is a diagonal matrix, with each diagonal entry being identically o = 2 x
1073 m. This value is chosen by trial and error to ensure the convergence of the Markov
Chain in reasonable time, because C' controls the magnitude of P(d|m).



Example Az (km) 6, (°) 6. (°) R, (km) R, (km)

No.
1! -7.29 32.0 27.8 5.81 1.16
22 -6.09 84.0 59.1 0.219 0.730
31! -5.37 16.8 87.9 0.917 0.917
41 -19.5 87.4 74.0 18.5 9.24

! Tn the training data set.
2 In the validation data set.

Table 1: Parameters for example predictions of the spheroid emulator. Ap/u = 1073,
Az =0, Ay = 0.
Example Az Riyaz &) cf ct c cf e
No. (km) (km)
1 -11.3 773 175
-0.26 1.67 —
0.397i
2.53 0.764 + —0.953 —
0.1514 0.0317i
0.270 0.782 4+ 0.119 — —0.0801 —
0.128i 0.855i 0.05414
0.00967 0.259 4+ —0.0346+ —0.0851+ 0.00864 +
0.01904 0.1124 0.139¢ 0.4811
0.182 —0.0489+ 0.386 + —0.108 — —-0478 — 0945 -—
0.857i 0.1261 0.243i 0.759i 0.08671
23 -2 1 4
0 0
0 0 0
0 0 0 0
0 0 0 1 0
0 0 0 0 0 0
3! -2.36  0.765 13.2
-0.246 —-0.519 +
0.629¢
0.0467 —0.585 — 0.228 —
0.6067 0.758i
0.901 —0.00655— 0.803 — —0.0570 —
0.5163¢ 0.276i 0.04914
-0.742 —0.0225 - —-0.140 + -0.661 + —0.770 —
0.002744 0.4014 0.683i 0.605¢
-0.216 0.0947 + —0.339 + 0.0930 + —0.688 — —0.0342+
0.447i 0.3961¢ 0.138: 0.164i 0.0629¢

! In the training data set.
2 In the validation data set.
3 Randomly chosen model not in training or validation data set.

Table 2: Parameters for example predictions of the general shape emulator. Each row cor-
responds to a spherical harmonics degree, I, from 0 to 5. Ap/p = 1073, Az = 0, Ay = 0
(Continued).



Example Az Ryaz c c? c e e
No. (km) (km)
41 -5.44  0.944 1.5
0.00403 0.0321 +
0.00003624
0.168 0.125 + —0.0852+
0.232: 0.0902¢

- 0.0110 + 0.00363 + 0.0275 +
0.000548  0.00001627 0.0000944: 0.00009167
-0.0633 0.0267 4+ —0.05674+ —0.0492 — —0.0315 —
0.04961 0.07032 0.002061¢ 0.0117:
- 0.00505 — 0.00167 4+ 0.0141 4+ 0.00290 + 0.0240 +
0.000607  0.000000297¢0.0000420: 0.0000663: 0.000155¢  0.000132¢

52 -3.86  2.99 1.00
-0.0193 0.0757 +
0.0001752
-0.0179 —-0.287 — 0.231 +
0.134: 0.0903:
0.118 —0.0206 — —0.0202 + 0.0469 -
0.00831 0.0252¢ 0.04402
-0.00770  0.0660 — —0.0169+ —0.0650+ 0.0411 —

0.000485:  0.000166:  0.00155% 0.00201%
-0.00559  0.0003484 0.00640 — 0.00763 + —0.0146+ 0.0350 —
0.00000148: 0.0000139: 0.000000677¢0.0000402: 0.00005817

! In the training data set.
2 In the validation data set.

Table 2: Parameters for example predictions of the general shape emulator. Each row cor-
responds to a spherical harmonics degree, [, from 0 to 5. Ap/pu = 1073, Az =0, Ay = 0.
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Figure S1: Comparison of surface deformation for the hypothetical, reference reservoir geometry and
the low-pass filtered reservoir geometry (done via filtering of spherical harmonic modes) shown in Fig.

1 of the main text. Displacements are calculated using the boundary element method. The low-pass fil-
tered reservoir geometry produces the same displacement pattern as that of the reference geometry, but
a higher displacement amplitude, because low pass filtering inevitably leads to a more spherical reservoir

geometry with larger volume. u,, u,: radial and vertical displacement, respectively. Calculations assume
Ap/u=1073.
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Figure S2: Spheroid emulator prediction vs. BEM prediction. Example 3.
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Figure S3: Spheroid emulator prediction vs. BEM prediction. Example 4.
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Figure S4: General shape emulator prediction vs. BEM prediction. Example 3.
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Figure S5: General shape emulator prediction vs. BEM prediction. Example 4.
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Figure S6: General shape emulator prediction vs. BEM prediction. Example 5.
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Figure ST7: Verifying surface displacement predictions of the spheroid emulator. (a) Sensitivity of

emulator-predicted surface displacement to reservoir centroid depth, Az, reservoir volume, V, reser-

voir aspect ratio, a, and rotation angle relative to the xz-axis, 0,. The default parameters are: Az = 0 km,

Ay = 0 km, Az

variations in a. Assuming «

—3km, V = 4.2 km?, «

1,0, = 0.

1.5 and Az

= 0°. Assuming Az

—6 km when testing

—2.5 km when testing variations in 6. (b) Comparing

emulator predictions with BEM solutions, Yang-Cervelli (YC) semi-analytical solutions (Cervelli, 2013),

and COMSOL finite element solutions for a sphere (o« = 1), an oblate spheroid («

spheroid (a = 1.5).
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Figure S8: Verifying the boundary element method for complex reservoir geometries. For reservoir ge-
ometries with high spatial frequencies, BEM error tends to be non-negligible. In the case of the reservoir
geometry with a threefold axisymmetry with regard to z, such as shown in Fig. 3d of the the main text,

the BEM error manifests as a scaling factor in the amplitude of the displacement field.
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Figure S9: (a) Distribution of 90th percentile relative error for each realization of complex reservoir ge-
ometry, for training versus validation data sets. Relative error is defined by Eqn. 10 in the main text. (b)
Distribution of 90th percentile relative error for each realization of complex reservoir geometry, plotted as

a function of the magnitude of the lowest mode of spherical harmonics, 08.
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