Dynamics of magmatic intrusion: what can we learn from the comparison of analog and numerical models?
Main Article Content
Abstract
This study investigates the dynamics of magmatic intrusions based on the joint analysis of analog and numerical models. By injecting different fluids from the bottom of a solidified gelatin block, we simulate the propagation of magmatic intrusions through the crust and record their shapes, trajectories, and velocity as they rise towards the surface. Additionally, we make use of a 2D fluid-filled crack propagation model constrained by our experimental observations. The numerical simulations demonstrate that our viscous fluid-filled crack experiments, conducted with silicon-oil injections, propagate in the same regime as typical basaltic intrusions. The comparison between analog and numerical results allow us to define the domain of validity of the numerical model and its limit of applicability. This study provides new insights into the processes that control the propagation of magmatic intrusions and our ability to reproduce them using analog and numerical models.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s).
Submission of an original manuscript to Volcanica will be taken to mean that it represents original work not previously published, and not being considered for publication elsewhere.
The Creative Commons Attribution 4.0 International License permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Accepted 2023-11-30
Published 2024-02-02